APPENDIX C

TRAFFIC IMPACT STUDY

Nelson & Pope

January 2008

TRAFFIC IMPACT STUDY

THE PRESERVE AT ISLANDIA

Town of Islip

March 2008

N & P JOB NO. 07246

TABLE OF CONTENTS

PURPOSE OF REPORT	1
STUDY METHODOLOGY	4
EXISTING CONDITION	6
Land Use	6
Bicycle and Transit Facilities	7
Traffic Volume Data	8
Accident History	12
LEVEL OF SERVICE DESCRIPTION	15
EXISTING CONDITION ANALYSIS	17
NO BUILD CONDITION	18
Traffic Growth	
Other Planned Projects	
PROPOSED DEVELOPMENT	22
Site Access	22
Parking	22
Trip Generation	22
Trip Distribution and Assignment	24
TRAFFIC IMPACT ANALYSIS	32
TRAFFIC IMPACT OF CONSTRUCTION PHASE	34
CONCLUSION	35

FIGURES

Figure 1: Area Map	2
Figure 2: Location Map	3
Figure 3: Existing AM Peak Hour Traffic Volumes	9
Figure 4: Existing PM Peak Hour Traffic Volumes	.10
Figure 5: Existing Saturday Peak Hour Traffic Volumes	.11
Figure 6: 2009 No Build AM Peak Hour Traffic Volumes	. 19
Figure 7: 2009 No Build PM Peak Hour Traffic Volumes	.20
Figure 8: 2009 No Build Saturday Midday Peak Hour Traffic Volumes	.21
Figure 9: Site Generated Trip Distribution	.25
Figure 10: Site Generated AM Peak Hour Traffic Volumes	.26

Figure 11: Site Generated PM Peak Hour Traffic Volumes	27
Figure 12: Site Generated Saturday Peak Hour Traffic Volumes	28
Figure 13: 2009 Build AM Peak Hour Traffic Volumes	29
Figure 14: 2009 Build PM Peak Hour Traffic Volumes	30
Figure 15: 2009 Build Saturday Peak Hour Traffic Volumes	31
TABLES	
Table 1: Intersection Geometry	7
Table 2: Accident Summary by Severity	12
Table 3: Accident Summary by Type of Collision	13
Table 4: Existing Condition LOS Summary	17
Table 5: Trip Generation estimates based on Silver Wood rates	23
Table 6: Trip Generation estimates based on ITE	24
Table 7: Level of Service Summary (Signalized)	32
Table 8: Level of Service Summary (Unsignalized)	32

APPENDIX

- Appendix B: Trip Generation
- Appendix C: Level of Service Definitions

Appendix D: Capacity Analysis/Level of Service Worksheets & Summary Table

PURPOSE OF REPORT

Nelson & Pope has investigated the potential traffic impacts associated with the proposed residential development "The Preserve @ Islandia" to be located on the eastside of Old Nichols Road south of Dean Street in the Village of Islandia, Town of Islip, Suffolk County, New York. The proposed residential development will be located on a parcel of land designated as District 504, Section 17, Block 03, Lots 7 & 8 on the Suffolk County Tax maps and comprised of a total of 72 Residential Condominium units (47 age restricted units and 25 non age restricted units). The site currently contains an Equestrian Center.

Access to the site will be provided via one full movement driveway on Old Nichols Road.

This report summarizes the results of a detailed investigation of the traffic impacts of the proposed development by reviewing the area's existing roadway characteristics and traffic conditions, estimating the vehicular volume and pattern that the proposed development will generate during peak hours, and analyzing the effect of the additional volume on the surrounding roadway network.

NEP NELSON & POPE

Figure 1: Area Map

N & -

NELSON & POPE

SOURCE: USGS MIDDLE ISLAND 1991

Figure 2: Location Map

STUDY METHODOLOGY

The study assesses the traffic impacts associated with the proposed development and identifies appropriate mitigation, if necessary. In executing the scope of work, the following steps were undertaken.

- A detailed field inspection was conducted to obtain an inventory of existing roadway geometry, location/geometry of existing driveways and intersections along with signing, signal timings, phasing and cycle lengths. The field inspection was reviewed to determine which intersections to be studied. From the field inspection, it was determined that, even though Johnson Avenue is a significant location within the study area, it should not attract traffic from the proposed residential development due to its residential nature. The site generated traffic anticipated to traverse the intersection of Old Nichols Road and Johnson Avenue will be through traffic and should not significantly impact the intersection. Therefore the intersection of Old Nichols Road and Johnson Avenue was not studied.
- Turning movement volume counts were conducted during the weekday morning (7:00 AM to 9:00AM), weekday evening (4:00 PM to 6:00 PM) and Saturday midday (11:00 AM to 2:00 PM) peak periods at the following intersections which were considered to be most likely impacted by the proposed residential development:
 - Veterans Highway (NYS Route 454) at Old Nichols Road/East Suffolk Avenue (CR 100)
 - o Old Nichols Road at Long Island Expressway (LIE) South Service Road
 - o Old Nichols Road at Long Island Expressway (LIE) North Service Road
- Hourly traffic volumes collected on Veterans Highway (NYS Route 454) and LIE North and South Service Roads in the vicinity of Old Nichols Road were obtained from the New York State Department of Transportation (NYSDOT).
- Accident data for the study intersections and roadways in the vicinity of the site was obtained from the New York State Department of Transportation (NYSDOT).

- The Town of Islip Department of Planning was contacted to obtain information on other planned projects in the nearby area that may affect the study intersections.
- An annual growth factor of 1.2% obtained from the NYSDOT LITP2000 Study for the Town of Islip was applied to the existing traffic volumes to estimate the increase in background traffic that would occur in 2009. These traffic volumes are referred to as Ambient Traffic Volumes.
- The 2009 No Build Volumes were developed by adding the other planned projects traffic to the ambient traffic volumes.
- Estimates of traffic that would be generated by the proposed development was prepared utilizing traffic volume data collected at the Silver Woods condominium development south of the proposed site and trip generation data published by the Institute of Transportation Engineers (ITE) publication, *Trip Generation, Seventh Edition*. The site-generated traffic volumes were assigned to the adjacent street system based upon the anticipated directional trip distribution forecasted by Nelson & Pope.
- The 2009 Build Condition volumes for the proposed development were developed by adding the site generated traffic to the 2009 No Build Condition volumes.
- Capacity analyses were performed at the study intersections identified above for the Existing Condition, No Build Condition and Build Condition for the weekday AM, PM and Saturday midday peak hours. Capacity analyses were also conducted at the site driveway for the Build Condition during the weekday AM, PM and Saturday midday peak hours.
- The results of the analyses for the 2009 No Build Conditions and the 2009 Build Conditions were compared to identify any significant impact associated with the proposed development.
- In accordance with the findings of the capacity computations, where appropriate, recommendations were made to mitigate the project traffic impacts.

EXISTING CONDITION

Land Use

As previously discussed the proposed residential development "The Preserve @ Islandia" will be located on the eastside of Old Nichols Road on a parcel of land designated as District 504, Section 17, Block 03, Lots 7 & 8 on the Suffolk County Tax maps in the Village of Islandia, Town of Islip, New York. The site currently contains an Equestrian Center.

Roadway Conditions

The following is a list of roadways included in the study network surrounding the site. The greatest portion of the traffic generated by the proposed developments will be distributed throughout the network. The general descriptions listed here refer only to the sections of the roadways that exist near the site. Their cross-section may vary further away from the site. The Average Annual Daily Traffic (AADT) is listed for each roadway where available in the most recent NYDOT Local Highway Traffic Volumes Report.

Veterans Highway (NYS Route 454) is a principal arterial under the jurisdiction of the New York State Department of Transportation (NYSDOT) with a general northwest/southeast orientation in the Vicinity of Nichols Road. However, for the purpose of this study, Veterans Highway is considered an east/west roadway. Veterans Highway in the vicinity of Old Nichols Road is a four-lane, divided roadway with exclusive turn lanes at key intersection and a posted speed limit of 55 miles per hour. This section of NYS Route 454, between the Long Island Expressway and Suffolk Avenue (CR 100), has an average annual daily traffic (AADT) volume of approximately 33,456 vehicles per day (source: NYSDOT Traffic Volume Report 2006) and NYS Route 454 between Suffolk Avenue (CR 100) and Lakeland Avenue, has an average annual daily traffic (AADT) volume of approximately 40,900 vehicles per day (source: NYSDOT Traffic Volume Report 2004).

The *Long Island Expressway North Service Road* is a principal arterial under the jurisdiction of the Suffolk County Department of Public Works (SCDPW) in the vicinity of Old Nichols Road and is a two-lane westbound one-way roadway with a posted speed limit of 40 miles per hour. This section of the North Service Road, between Old Nichols Road and Terry Road, has an

AADT of approximately 4,936 vehicles per day (source: NYSDOT Traffic Volume Report 2005).

The *Long Island Expressway South Service Road* is a principal arterial under the jurisdiction of the SCDPW in the vicinity of Old Nichols Road and is a two-lane, eastbound one-way roadway with a posted speed limit of 40 miles per hour. This section of the South Service Road, between Veterans Highway and Old Nichols Road, has an AADT of approximately 5,445 vehicles per day (source: NYSDOT Traffic Volume Report 2005).

Old Nichols Road is a collector roadway under the jurisdiction of the Village of Islandia and provides one lane per travel direction in the vicinity of the site. Nichols Road is generally a northeast/southwest roadway; however, for the purpose of this study it is considered a north/south roadway. The posted speed limit on Old Nichols Road in the vicinity of the site is 30 miles per hour.

Table 1 summarizes the lane configurations and traffic controls at the study intersections.

Intersection	Approach	Lane Designation*	Traffic Control
Veterans Highway (NYS Route 454) at Old	EB WB	L-2T-R L-2T-R	
Nichols Road/East Suffolk Avenue (CR 100)	NB SB	L-2T-R L-T-TR	Traffic Signal
Old Nichols Road at LIE South Service Road	EB NB SB	2L-T-TR 2T-R 2L-2T	Traffic Signal
Old Nichols Road at LIE North Service Road	WB NB SB	2L-2T-TR 2L-2T 2T-TR-R	Traffic Signal

Table 1: Intersection Geometry

* L = Left turn lane; T = through lane; R = Right turn lane

Bicycle and Transit Facilities

The Central Islip station of the Long Island Railroad (LIRR) is located on Suffolk Avenue approximately 1.5 miles from the proposed site. Suffolk County Bus Route 3D, Brentwood to Stony Brook Railroad, runs along Suffolk Avenue and Old Nichols Road with two designated stops in the vicinity of the site. Suffolk County Bus Route S54, Patchogue Railroad to Walt Whitman Mall runs along Veterans Memorial Highway in the vicinity of the site with a stop at the intersection of Old Nichols Road/Suffolk

Avenue and Veterans Memorial Highway. Also Nichols Road is a signed bicycle route. The bicycle route extends from Johnson Avenue to Veterans Memorial Highway, connecting with the state bicycle route on Veteran Memorial Highway and continues westerly on to Suffolk Avenue.

Traffic Volume Data

Weekday turning movement counts were collected at the study intersections on Wednesday and Thursday November 14 and 15, 2007 during the AM (7:00-9:00 AM) and PM (4:00-6:00 PM) peak periods. The weekend turning movement counts were collected on Saturday, November 17, 2007 during the Saturday midday peak period (11:00 AM – 2:00 PM). The volume data was tabulated to identify the peak hours at the study intersection.

Seasonal adjustment factors of 1.025 and 0.856 for weekday and weekend respectively for the month of November (month of counts) were obtained from data contained in the 2006 NYSDOT Traffic Data Report. These seasonal adjustment factors were developed from NYSDOT continuous data collected for a three year period. Applying the weekday normalization factor for the month of November to the traffic count data collected would effectively reduce the existing peak hour volumes. Therefore to be conservative, the weekday peak hour traffic volumes collected during the month of November were not normalized. However, applying the weekend normalization factor to the weekend volumes will increase the weekend volumes, hence the weekend volumes were normalized. The existing intersection peak hour volumes are shown on Figures 3, 4, and 5 and detailed data are contained in Appendix A.

Figure 3: Existing AM Peak Hour Traffic Volumes

Figure 4: Existing PM Peak Hour Traffic Volumes

Figure 5: Existing Saturday Peak Hour Traffic Volumes

Accident History

Accident data for the sections of roadways and intersections in the vicinity of the site was obtained from the NYSDOT. The most recent data available was from July 2004 to June 2007 (3 year period). The data was reviewed and summarized in the following tables.

				Accident Seve	erity	
Location	Fata	lity	Injury	Property Damage	Non- Reportable	TOTAL
LIE North Service Road at Old Nichols Road	-		-	2	-	2
Old Nichols Road between LIE North Service Road and LIE South Service Road	d -		4	1	-	5
LIE South Service Road at Old Nichols Road	-		-	-	-	0
Old Nichols Road between LIE South Service Road and Hancock Street	-		-	-	-	0
Old Nichols Road at Hancock Street	-		-	-	-	0
Old Nichols Road between Hancock Street and Halsey Street	-		-	-	-	0
Old Nichols Road at Johnson Avenue	-		3	2	-	5
Old Nichols Road between Johnson Avenue and Dean Street	-		-	1	-	1
Old Nichols Road at Dean Street	-		-	-	-	0
Old Nichols Road between Dean Street and Bedford Drive	1	-	-	-	-	1
Old Nichols Road at Bedford Drive	-		-	1	-	1
Old Nichols Road between Bedford Drive and Ernhardht Way	-		-	-	-	0
Nichols Road at Ernhardht Way	-		-	-	-	0
Old Nichols Road between Ernhardht Way and Split Cedar Drive	-		-	-	-	0
Old Nichols Road at Split Cedar Drive	-		2	2	-	4
Old Nichols Road between Split Cedar Drive and NYS Route 454 (Veterans Memorial Highway)	-		-		-	-
Old Nichols Road at NYS Route 454 (Veterans Memorial Highway)	1		34	22	2	59
То	otal $\frac{2}{39}$	2	43 55%	31 39%	2 3%	78 100%

Table 2: Accident Summary by Severity

Table 2 indicates a total of 78 accidents occurred at or in the vicinity of the study intersections during the analysis period. A total of two accidents involved fatalities during the study period,

one of them resulting in two fatalities which occurred at the intersection of Nichols Road and Veterans Road (NYS Route 454). This accident involved a vehicle making a right turn onto Nichols Road form westbound Veterans Road and a bus traveling north on Suffolk Avenue/Nichols Road. Driver inattention was attributed to the accident. The other fatal accident resulting in one fatality occurred on Old Nichols Road between Dean Street and Bedford Drive and involved a pedestrian. The location with the greatest number of accidents is the intersection of Old Nichols Road and Veterans Parkway (NYS Route454).

						Accide	ent Type	;			
Location	Right Angle	Rear End	Head On	Left Turn	Right Turn	Fixed Object	Ped/ Bicycle	Parked Vehicle	Over- Taking	Other/ Unknown	Total
LIE North Service Road at Old Nichols Road	-	1	-	-	1	-	-	-	-	-	2
Old Nichols Road between LIE North Service Road and LIE South Service Road	1	1	-	1	-	-	-	-	1	1	5
LIE South Service Road at Old Nichols Road	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road between LIE South Service Road and Hancock Street	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road at Hancock Street	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road between Hancock Street and Halsey Street	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road at Johnson Avenue	-	2	-	1	-	-	-	-	-	2	5
Old Nichols Road between Johnson Avenue and Dean Street	-	1	-	-	-	-	-	-	-	-	1
Old Nichols Road at Dean Street	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road between Dean Street and Bedford Drive	-	-	-	-	-	-	1	-	-	-	1
Old Nichols Road at Bedford Drive	-	-	-	-	-	1	-	-	-	-	1

Table 3: Accident Summary by Type of Collision

						Accide	ent Type	:			
Location	Right Angle	Rear End	Head On	Left Turn	Right Turn	Fixed Object	Ped/ Bicycle	Parked Vehicle	Over- Taking	Other/ Unknown	Total
Old Nichols Road between Bedford Drive and Ernhardht Way	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road at Ernhardht Way	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road between Ernhardht Way and Split Cedar Drive	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road at Split Cedar Drive	-	-	-	2	-	-	-	-	1	1	4
Old Nichols Road between Split Cedar Drive and NYS Route 454 (Veterans Memorial Highway)	-	-	-	-	-	-	-	-	-	-	0
Old Nichols Road at NYS Route 454 (Veterans Memorial Highway)	5	18	-	11	1	1	-	-	3	20	59
Total	6 8%	23 29%	0 0%	15 19%	2 3%	2 3%	1 1%	0 0%	5 6%	24 31%	78 100%

A review of Table 3 indicates that a plurality of the accidents (31%) involved unknown type of accidents, the second most frequent reportable accidents (29%) involved rear-end accidents and the third most frequent accidents (19%) involved left turn accidents. A majority of the accidents (76%) occurred at the intersection of Old Nichols Road and Veterans Parkway (NYS Route 454).

LEVEL OF SERVICE DESCRIPTION

While traffic volumes provide an important measure of activity on the adjacent roadway network, evaluating how well that network accommodates those volumes is also important. Therefore, a comparison of peak hour traffic volumes with available roadway capacity is prepared. Capacity, by definition, represents the maximum number of vehicles that can be accommodated given the constraints of roadway geometry, traffic characteristics and controls. Intersections primarily control capacity in roadway networks, since conflicts exist at these points between through, crossing and turning traffic. Because of these conflicts, congestion is most likely to occur at intersections. Therefore, intersections are studied most often when determining the quality of traffic flow.

Level of service and capacity analyses for the study intersections were performed using Highway Capacity Software (*HCS*+) *Release 5.21*, prepared by the Federal Highway Administration. HCS+ is a series of computer programs strictly adhering to the guidelines set forth in *Highway Capacity Manual 2000 (HCM2000)*. *HCM2000* contains procedures and methodologies for estimating capacity and determining level of service for many transportation facilities and modes including signalized and unsignalized intersections.

An intersection's level of service (LOS) describes its quality of traffic flow. It ranges in grade from LOS "A" (relatively congestion-free) to LOS "F" (very congested). The level of service definition, as well as the threshold values for each level, varies according to whether the intersection is controlled by a signal or a stop sign. A brief description is given here and a more detailed definition is found in Appendix C.

The capacity of a signalized intersection is evaluated in terms of the ratio of demand flow rate to capacity (V/C ratio). The capacity for each approach represents the maximum rate of flow (for the subject approach) which may pass through the intersection under prevailing traffic, roadway and signal conditions. The level of service of a signalized intersection is evaluated on the basis of average control-delay measured in seconds per vehicle (sec/veh). The control-delay is calculated using an equation that combines the stopped-delay with the vehicle acceleration/deceleration delay that is caused by the signalized intersection. At the signalized

intersections, factors that affect the various approach capacities include width of approach, number of lanes, signal "green time", turning percentages, truck volumes, etc. However, delay cannot be related to capacity in a simple one-to-one fashion. For example, it is possible to have delays in the Level of Service "F" range without exceeding roadway capacity. Substantial delays can exist without exceeding capacity if one or more of the following conditions exist: long signal cycle length; a particular traffic movement experiences a long red time; or progressive movements for a particular lane is poor.

EXISTING CONDITION ANALYSIS

The 2007 existing peak hour traffic volumes depicted in Figures 3, 4 and 5 were used to determine the existing capacity and LOS of the study intersections. Table 4 contains the LOS summary for the Existing Condition calculated through the HCS software described previously. The detailed analysis worksheets are in Appendix D.

Location (Signalized Intersections)	AM Pe	eak Hour	PM I Ho	Peak our	Saturday Peak	y Midday Hour
	LOS	Delay	LOS	Delay	LOS	Delay
Veterans Highway (NYS Route 454) at Old Nichols Road/East Suffolk Avenue (CR 100)	36.8	D	65.8	Е	37.0	D
Old Nichols Road at LIE South Service Road	20.0	В	45.8	D	19.8	В
Old Nichols Road at LIE North Service Road	34.6	С	24.1	С	19.0	В

Table 4: Existing Condition LOS Summary

Veterans Highway (NYS Route 454) at Old Nichols Road/East Suffolk Avenue (CR 100)

The signalized intersection of Veterans Highway at Old Nichols Road/East Suffolk Avenue currently operates at LOS D, E and D during the weekday AM, PM and Saturday midday peak hours respectively.

Old Nichols Road at LIE South Service Road

The signalized intersection of Old Nichols Road at LIE South Service Road currently operates at LOS B, D and B during the weekday AM, PM and Saturday midday peak hours respectively.

Old Nichols Road at LIE North Service Road

The signalized intersection of Old Nichols Road at LIE North Service Road currently operates at LOS C, C and B during the weekday AM, PM and Saturday midday peak hours respectively.

NO BUILD CONDITION

The No Build Condition represents traffic conditions expected at the study intersections in the future year 2009 without the construction of the proposed project. The No Build Condition traffic volumes are estimated based on two factors as follows:

- Increases in traffic due to general population growth and developments outside of the immediate project area. This traffic increase is referred to as ambient growth.
- Other planned projects located near the project site that may affect traffic levels and patterns at the study intersections in this report.

Traffic Growth

A 1.2% annual growth factor was obtained from the NYSDOT. The existing traffic volumes were increased by this factor for a period of 2 years to project volumes to the year 2009.

Other Planned Projects

Planned projects to be constructed prior to the proposed project that may significantly influence the traffic flow through the study intersections would be considered as part of the No Build analysis. The Town of Islip and Village of Islandia were contacted to obtain information on any planned projects in the area. At the time this study was conducted, no other planned projects were identified. The 2009 No Build traffic volumes are shown on figures 6, 7 and 8.

Figure 6: 2009 No Build AM Peak Hour Traffic Volumes

Figure 7: 2009 No Build PM Peak Hour Traffic Volumes

Figure 8: 2009 No Build Saturday Midday Peak Hour Traffic Volumes

PROPOSED DEVELOPMENT

Site Access

As depicted on the site plan, access to the site will be provided via one full movement driveway on Old Nichols Road in the vicinity of the existing access to the equestrian center on the site. As requested by the Village of Islandia, an alternative access off of Old Nichols Road via the existing Schley Place right-of-way was considered. These two driveway locations were analyzed from the standpoint of safety, location and design. Sight distance measurements were performed at both access points and compared with the recommendations contained in the reference, *A Policy on Geometric Design of Highways and Street* published in 2004 by the American Association of State Highway and Transportation Officials (AASHTO). It was determined from the review of the sight distance data that, the measured sight distances from both driveways will exceed the recommended sight distance criteria for left turn and right turn vehicles exiting the site. However the Schley Place right-of –way location will provide better sight lines for left turn vehicles exiting the site.

Parking

A total of 151 parking spaces (driveway and garage) will be provided for the 72 condominiums and 19 parking spaces will be provided for the 3,750 SF recreation building. The parking calculations as shown on the site plan indicate that 151 and 19 parking spaces are required to support the 72 condominiums and 3,750 SF Recreation building respectively in accordance with the Village of Islandia parking code. Therefore the parking requirements are met.

Trip Generation

In order to identify the impacts the proposed development will have on the adjacent street system, it is necessary to estimate the magnitude of traffic volume to be generated during the peak hours and to estimate the directional distribution of the site traffic when entering and exiting the subject property. As requested by the Village of Islandia, Nelson & Pope has conducted traffic counts at the Silver Woods condominium development similar to the proposed development located on Erhardht Way south of the proposed site in the Village of Islandia. The data was collected by means of manual turning movement counts at the driveway of the Silver

Woods development for the weekday AM (7-9AM) peak period, weekday PM (4-6PM) peak period and Saturday midday (11AM -2PM) peak period. Silver Woods contains 68 non-age restricted residential condominium units. The site data indicates rates of 0.41, 0.29 and 0.39 trips per unit during the weekday AM, PM and Saturday midday peak hours of the adjacent street respectively. Utilizing the Silver Woods trip generation rates, trip generation estimates were conducted for the proposed development. The following table summarizes the trips anticipated to be generated by the proposed 72 residential condominium units. The data collected at Silver Woods is included in Appendix B.

Land Use	A	M Peak I	Hour	PN	I Peak H	our	Satur	day Peak	Hour
	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	Total
68 condominium units	6	22	28	13	7	20	14	12	26
Trip generation rates (trips/unit)	0.09	0.32	0.41	0.19	0.10	0.29	0.21	0.18	0.39
72 condominium units (based on Silver Woods trip generation rates)	7	23	30	14	7	21	15	13	28

 Table 5: Trip Generation estimates based on Silver Wood rates

Source: Traffic Counts collected at Silver Woods, Village of Islandia, NY

Trip generation estimate for the proposed residential development (47 age restricted and 25 non age restricted residential condominium units) was also prepared utilizing data found under Land Use Code 251-Senior Housing Detached and Land Use Code 230-Residential Condominium/Townhouse within the Institute of Transportation Engineers' (ITE) publication, *Trip Generation, Seventh Edition*. This publication sets forth trip generation data obtained by traffic counts conducted at sites throughout the country. The following Table summarizes the trip generation estimates for the proposed project obtained from ITE. Appendix B contains the trip generation worksheets.

Time Period	Distribution	47 Senior Housing Units (ITE LUC 251)	25 Condominium/ Townhouse Units (ITE LUC 230)	Total
Waaliday AM	Enter	6	3	9
Peak Hour	Exit	9	14	23
I cak Hour	Total	15	17	32
	Enter	17	13	30
Weekday PM	Exit	11	6	17
r cak moui	Total	28	19	47
	Enter	6	27	33
Saturday Midday	Exit	7	23	30
r eak Houi	Total	13	50	63
	Comment Train	The second second the second s	JL. ITT	

|--|

Source: Trip Generation, 7th Edition, published by ITE

As can be seen from Tables 5 and 6 above, the trip generation estimates from ITE are higher than those from the Silver Woods rates. In order to perform a conservative analysis the trip generation obtained from ITE was utilized in this study. It can be seen from Table 6 that, the proposed project will generate 32 trips (9 entering and 23 exiting) during the weekday AM peak hour, 47 trips (30 entering and 17 exiting) during the weekday PM peak hour and 63 trips (33 entering and 30 exiting) during the Saturday midday peak hour.

Trip Distribution and Assignment

The volume of site traffic that would travel through the study intersections during peak hours was distributed and assigned to each movement based on the existing roadway and travel patterns. The nature of the proposed land use and its associated travel patterns were considered as well. Figure 9 depicts the trip distribution for the proposed project. Figures 10, 11 and 12 depict the site generated volumes for the weekday AM, PM, and Saturday midday peak hours. The site generated volumes were then added to the weekday AM, PM and Saturday midday No Build Condition volumes resulting in the Build Condition volumes. The Build volumes are depicted in Figures 13, 14 and 15.

Figure 9: Site Generated Trip Distribution

Figure 10: Site Generated AM Peak Hour Traffic Volumes

Figure 11: Site Generated PM Peak Hour Traffic Volumes

Figure 12: Site Generated Saturday Peak Hour Traffic Volumes

Figure 13: 2009 Build AM Peak Hour Traffic Volumes

Figure 14: 2009 Build PM Peak Hour Traffic Volumes

Figure 15: 2009 Build Saturday Peak Hour Traffic Volumes

TRAFFIC IMPACT ANALYSIS

As stated previously, the intersection capacity and level-of-service (LOS) analyses were based on the procedures and guidelines presented in the *HCM 2000*, published by the Transportation Research Board. The *HCS+*, *Release 5.21* was used to analyze the study intersections and provide a LOS measurement of the intersections operation. The six classes of LOS, ranging from LOS A (excellent) to F (worst), are defined in Appendix C.

Signalized Intersections	Condition	AM Peak Hour		PM Peak Hour		Saturday Midday Peak Hour	
		LO S	Delay	LO S	Delay	LOS	Delay
Veterans Highway (NYS Route 454) at Old Nichols Road/East Suffolk Avenue (CR 100)	Existing	D	38.6	Е	65.8	D	37.0
	No Build	D	40.0	Е	72.1	D	37.8
	Build	D	40.4	Е	72.6	D	37.8
Old Nichols Road at LIE South Service Road	Existing	В	20.0	D	45.8	В	19.8
	No Build	С	20.1	D	49.9	В	19.9
	Build	С	20.1	D	51.3	В	20.0
Old Nichols Road at LIE North Service Road	Existing	С	34.6	С	24.1	В	19.0
	No Build	D	36.1	С	24.2	В	19.2
	Build	D	36.2	С	24.3	В	19.3

Table 7: Level of Service Summary (Signalized)

Notes: LOS = Level of Service, Delay = seconds/vehicle,

Table 8: Level of Service Summary (Unsignalized)

Unsignalized Intersections	Condition	Approach/ Movmnt.	AM Pe	eak Hour	PM Peak Hour		Saturday Midday Peak Hour	
			LOS	Delay	LOS	Delay	LOS	Delay
Old Nichols Road at Site Driveway	Build	SB-L	А	8.6	В	11.5	А	9.8
		WB- LR	С	22.1	Е	40.9	D	26.3

Notes: LOS = Level of Service, Delay = seconds/vehicle

Veterans Highway (NYS Route 454) at Old Nichols Road/East Suffolk Avenue (CR 100)

During the No Build Condition, the signalized intersection of Veterans Highway (NYS Route 454) at Old Nichols Road/East Suffolk Avenue (CR 100) will operate at LOS D, E, D during the weekday AM, PM and Saturday midday peak hours respectively. After the completion of the project, the intersection will continue to operate at No Build LOS conditions during the analyzed
peak periods. Therefore, no significant impacts are created and no mitigation measures are proposed at this intersection.

Old Nichols Road at LIE South Service Road

During the No Build Condition, the signalized intersection of Old Nichols Road at LIE South Service Road will operate at LOS C, D, B during the weekday AM, PM and Saturday midday peak hours respectively. After the completion of the project, the intersection will continue to operate at No Build LOS conditions during the analyzed peak periods. Therefore, no significant impacts are created and no mitigation measures are proposed at this intersection.

Old Nichols Road at LIE North Service Road

During the No Build Condition, the signalized intersection of Old Nichols Road at LIE North Service Road will operate at LOS D, C, B during the weekday AM, PM and Saturday midday peak hours respectively. After the completion of the project, the intersection will continue to operate at No Build LOS conditions during the analyzed peak periods. Therefore, no significant impacts are created and no mitigation measures are proposed at this intersection.

Old Nichols Road at Site Driveway

The site driveway analyses at any of the two locations considered will be the same since the traffic volumes will be same at either of these locations after the construction of the project. After the completion of the project, the southbound Old Nichols Road left turn movement at the intersection of Old Nichols Road and site driveway will operate at LOS A, B, and A during the weekday AM, PM and Saturday midday peak hours. The westbound site driveway approach will operate at LOS C, E and D during the weekday AM, PM and Saturday midday peak hours.

TRAFFIC IMPACT OF CONSTRUCTION PHASE

Information obtained from the client indicates that, between 20 and 30 vehicles are anticipated to utilize the site per day during the peak phase of the construction period. Construction work will be done on a 7:00 AM to 3:00 PM shift, meaning most of the workers will be on site on or before 7:00 AM (before the AM peak hour) and will vacate the site before the PM peak hour. The traffic anticipated to be generated by the proposed project as shown in the traffic study is higher than the number of vehicles anticipated utilizing the site during construction. It is our opinion that the construction phase will not significantly impact the operation of the roadways in the vicinity of the site since the findings of the traffic impact study indicated the same for the traffic generated by the project after construction.

CONCLUSION

Nelson & Pope has investigated the potential traffic impacts associated with the proposed Residential development "The Preserve at Islandia" to be located on the eastside of Old Nichols Road south of Deans Street in the Village of Islandia, Town of Islip, Suffolk County, New York. The proposed residential development will be located on a parcel of land designated as District 504, Section 17, Block 03, Lots 7 & 8 on the Suffolk County Tax maps and comprised of a total of 72 Residential Condominium units (47 age restricted units and 25 non age restricted units). The site currently contains an Equestrian Center. The following is a summary of this investigation and the findings thereof:

- 1. The following intersections were studied:
 - Veterans Highway (NYS Route 454) at Old Nichols Road/East Suffolk Avenue (CR 100)
 - > Old Nichols Road at Long Island Expressway (LIE) South Service Road
 - > Old Nichols Road at Long Island Expressway (LIE) North Service Road
- 2. Existing volumes were counted in November 2007. Future No Build traffic volumes were determined by applying a 1.2% NYSDOT annual growth factor to the existing traffic volumes. The site-generated traffic was estimated and distributed to the study intersections and then added to the No Build traffic volumes to generate the future Build traffic volumes.
- 3. The proposed Residential development is projected to generate 32 trips during the AM peak hour (9 entering, 23 exiting), 47 trips during the PM peak hour (30 entering, 17 exiting) and 63 trips during the Saturday midday peak hour (33 entering, 30 exiting).
- 4. As depicted on the site plan, access to the proposed development will be provided via one full movement driveway on Old Nichols Road.
- 5. Capacity analyses were conducted at all the study intersections during the weekday AM, weekday PM and Saturday midday peak hours.
- 6. After the completion of the project all the study intersections will continue to operate at No Build LOS during the weekday AM, PM and Saturday midday peak hours.

7. The traffic anticipated to be generated during the construction phase will be less than the traffic anticipated to be generated by the proposed project after construction. Therefore the traffic from the construction phase will not significantly impact the operation of the roadways in the vicinity of the site since the findings of the traffic impact study indicated the same for the traffic generated by the project after construction.

Based on the results of the Traffic Impact Study as detailed in the body of this report, it is the professional opinion of Nelson & Pope that, the construction of proposed Residential development will not result in an adverse traffic impact at the study intersections.

Appendix A: Existing Traffic Volume

Nelson & Pope

INTERSECTION: NYS ROUTE 454 @ NICHOL'S ROAD

PROJECT TITLE: THE PRESERVE @ ISLANDIA

		H ت	HOURLY		4006 4068 4068 4165 4165		
			TOTAL		870 950 1013 1173 956 1094 1094 1037	4	
			Total	R R	178 197 197 197 197 191 191 191 191 191 191	0.91	
					00000000 0		
		BOUND	BIGHT	HIDEN	8 19 19 70 70		
	AIU	SOUTH	Тнан		155 145 155 155 155 155 158 158 158 158 158 15		
SLAN	ISLA		LEFT		37 52 52 54 54 55 57 57 57 57 57 57 57 57 57 57 57 57		
			U-TURN				
VILLA			TOTAL		622 168 185 185 210 127 137 157 157 157 157 157 157 157 157	0.75	
			RTOR		00-N-00 3		
liner.		BOUND	RIGHT		655 655 655 655 756 645 645 645 645 645 645 645 645 645 6		
		NORTH	Thru		79 81 78 115 58 58 58 77 77 73 74 2 42		
			LEFT		80 80 80 80 80 80 80 80 80 80 80 80 80 8		
			U-T-URN		00000000 0		
			TOTAL		387 428 436 436 482 375 496 496 496 496	0.87	
			RTOR		0-000N-0 M		
		BOUND	RIGHT		21 23 23 23 23 23 23 23 23 23 23 23 23 23		
		WEST	THRU		299 522 535 535 535 294 271 271 277 377 377 377 377		
			I LEFT		67 80 56 56 82 62 82 62 220		
			U-TURN		00000000 0		
SDAY			Total		145 195 195 195 195 195 195 195 105 149 105 149 105 105 105 105 105 105 105 105 105 105	14.0	
VEDNE			RTOR		00000000 0		
1/07 V	dialogr.		RIGHT		39 6474 131 15 39		
LECTED: 11/14/	1	u H	THRU		153 177 177 197 241 255 235 235 235 201 201		
			IN LEFT		<u>נא</u> אסא-ממממ		
ATE COL			U-70		00000000		
'n		START TIME			7:00 AM 7:15 AM 7:30 AM 7:30 AM 8:00 AM 8:15 AM 8:45 AM 8:45 AM 7:45-8:45 AM 7:45-8:45 AM	-	

Nelson & Pope

IOL'S ROAD	
NIC	
Θ	2
454	0000
UTE	Π
8	5
NΥS	11/15/
SECTION:	LEPTED.
ΕR	Ē
z	щ
	Q

PROJECT TITLE: THE PRESERVE @ ISLANDIA

		HOURL	4527 4527 4527 4527	10/1		
	TOTAL		1154 1154 985 985 1076 1251 1251 1251 1215	1.746		
		TOTAL	135 132 103 103 156 155 155	. U Y	3	0.88
		TOR	00000000		,	•
	OUND	RIGHT	1904-rago	35		
AIU	ROLTHB	THRU	86 86 86 86 86 86 86 86 86 86 86 86 86 8	377		
ISLAN		LEFT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	218		
L) 19		U-TURN	00000000	0		
		TOTAL	275 260 256 256 296 222 264 264 264 264 264	950		0.90
	1	RTOR	32 35 35 35 35 34 30 30 30 30 30 30 30 30 30 30 30 30 30	124		
		KIGHT	274 274 274 274 274 274 274 274 274 274	124		
Nopture N		HRU	180 144 148 141 157 157 141	584		
	1	-	22 24 25 31 8 25 25 25 25 25 25 25 26 29 20 20 20 20 20 20 20 20 20 20 20 20 20	811		
	11 Turnu		00000000	0		
	Thrai	101AL	375 375 365 365 445 445 445 445 445 445 445 445 392 392	1760	000	7617
	DTOD		~ 0 0 0 8 4 1 1	23		
DND08.	Рісит		70 67 78 88 88 78 78 78 78 70 70 70 70 70 70 70 70 70 70 70 70 70	262		
WEST	Тиві		241 233 235 255 255 255 255 255 255 255	1117		
	I FFT		63 85 134 134 88 88 88 79	358		
	U-TURN		00000000	0		
	TOTAL		365 334 334 334 336 336 336 336 336 336 336	1426	06.0	
	RTOR		000-0:0-00	=		
BOUND	RIGHT		ប្រភព្ភក្រុលហ្	34		
EAST	THRU		318 255 255 256 256 256 256 256 259 359	1306		
	LEFT		±2 = 23 € 53 24	75		
	U-TURN		00000000	•		
START TIME			4:00 PM 4:15 PM 4:15 PM 4:15 PM 5:15 PM 5:15 PM 5:15 PM 5:15 PM FFAK HOUR-	5:00-6:00 PM	PHF	

Nelson & Pope

INTERSECTION: NYS ROUTE 454 @ OLD NICHOL'S ROAD

PROJECT TITLE: THE PRESERVE @ ISLANDIA

		Γ			-1		
			Holla.	28555 28555 28495 2976 29785 20785 2075 2075 2075 2075 2075 2075 2075 207	CC/7		
			TOTAL	657 731 745 745 704 677 769 696 764 764 764	000 8702		_
				102 134 134 134 134 134 134 134 134 134 134	445		0.85
			1010	000000000000000000000000000000000000000	c	,	
				- a 4 5 3 1 5 4 9 9 9 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	72		
	4DIA			53 24 54 55 55 55 55 55 55 55 55 55 55 55 55	260		
SLANT SLANT	ISLAN			802 a 5 8 5 8 5 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8	140		
	GE OF		IL-TUBM	000000000000	0		
			TOTAL	158 159 150 150 150 150 150 150 150 150 150 150	626	70 0	- - -
	CLION		RTOR	000-000-0000	-		
	JURISDI	BOUND	RIGHT	23 25 25 25 25 25 25 25 25 25 25 25 25 25	145		
ر -		NORTHI	THRU	100 100 105 105 105 105 105 105 105 105	207		
			LEFT	ち ひ ご 昭 77 時 ち ひ ち 8 2	77		
			U-TURN	~~~~~~~~~~~	0		
			TOTAL	237 271 255 255 255 255 255 255 255 255 255 25	164	0.90	
			RTOR	000000000000000	o		
		WESTBOUND	RIGHT	27 27 25 25 25 25 25 25 25 25 25 25 25 25 25	193		
			Тнви	157 170 187 187 178 177 177 177 177 177 177 177	738		
			LEFT	55 52 52 52 52 52 52 52 52 52 52 52 52 5	233		
			U-TURN		0		
Y			Total	180 181 181 181 181 181 180 181 181 181	743	0.91	
TURD/			RTOR	000000000000	•		
07 SA		BOUND	RIGHT	<u> ユータらる=ユアユののユ</u>	2		
1/17/		EAST	Тняи	151 152 155 156 156 156 156 156 156 156 156 156	61		
ECTED:			LEFT	23 6 23 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
E COLL			U-TURN		-		
DAT		START TIME		11:00 AM 11:15 AM 11:15 AM 11:15 AM 11:15 AM 12:15 PM 12:15 PM 12:15 PM 12:15 PM 12:15 PM 13:0 PM 13:5 PM 14:5 PM 14:5 PM 15:5	12:15-1:15 PM	ЧНЕ	

Nelson & Pope

INTERSECTION: LIE SOUTH SERVICE ROAD @ OLD NICHOL'S ROAD

PROJECT TITLE: THE PRESERVE @ ISLANDIA

				- <u>v</u>		
		CUH.	HOURLY	1723 1833 1910 1835 1835		
			I CIAL	355 494 465 465 465 465 419 419 419 419		
			TOTAL	170 170 189 237 205 195 195 191 191 191 191 191 191	0.89	
			RTOR	000000000000000000000000000000000000000		
		DUND	RIGHT	000000000000000000000000000000000000000		
	A N	SOUTHE	Тняи	144 155 155 174 173 173 173 173 173 173 173 173 173 158 158		
	SLAN		LEFT	26 34 63 46 63 46 46 46 45 33 88 45 33 88 45 90		
E OF	5		U-TURN	00000000 0		
VILLA			TOTAL	133 155 155 155 155 155 155 155 155 155	n.70	
CTION-			RTOR	50 53 53 53 53 53 54 54 50 55 54 54 50 55 55 55 55 55 55 55 55 55 55 55 55		
ustari).		BOUND	RIGHT	44 33 56 17 26 75 73 23 26 74 74 74 74 74 74 74 74 74 74 74 74 74		
		NORTH	Тнки	79 76 86 76 90 90 79 90 79 342		
			LEFT	0000000 0		
			U-TURN	0000000 0		
			TOTAL			
			RTOR	0000000 0		
			RIGHT	00000000 0		
	WEGT	21	Тняи	00000000 0		
			LEFT	000000000		
			U-TURN	000000000		
DAΥ			TOTAL	52 65 90 98 98 98 98 98 12 12 5 12 5 12 5 0.91 0.91		
EDNES			K OK	200000400		
<u>,07 W</u>	BOUND		KIGHT	<u>о</u> и – раонии		
ECTED: 11/14/0	East		нни	<u>51 80100108</u> 11		
	i	-	L L	35 44 63 95 95 97 97 97 97 97		
TE COLL			NHO 1 -0	0000000 0		
DA	START TIME			7:00 AH 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:16 AM 8:45 AM 8:45 AM 7:30-8:30 AM PHF		

NELSON & POPE

			ļr	- I	
			ator	00	>
			BIGHT	00	>
ANDIA	DIA		THRI	11	3
۵ SL	ISI AN		LEFT	73 86	2
ESERVE	ЭС ЭС		L-TURN	00	2
THE PR	VILLAG		TOTAL	203 (BO	200
LE:]	TION:		RTOR	21 21	ŭ
JECT 7	URISDIC		RIGHT	56 56	,
PRO	C	NOPTHR	THRU	105	
			LEFT	00	•
			-Turn	00	
			TOTAL U	00	
0			RTOR -	00	
s Roai		DND	RIGHT	00	
CHOL'S		WESTBO	THRU	00	
)LD NI			LEFT	00	
80	-		J-TURN	00	•
E RoA	AΥ		ToTAL (326 436	
SERVIC	DNESD		RTOR	~ ~ ~	¢
OUTH S	7 WE	ONDO	RIGHT	7 £	r -
-Ш К	1/14/0	EASTBO	THRU	215 285	101
TION:	CTED:		LEFT	100 136	r
ITERSEC	COLLE		J-TURN	00	<
4	DATE	ART TIME	_	4:00 PM 4:15 PM	

	HOURLY	3237 3596 3831 3973 4063		
	TOTAL	719 825 825 825 825 825 825 825 825 825 825	4063	
	TOTAL	209 239 216 210 210 219 219 219 219 219 219	954 0.75	
	RTOR	00000000	•	
	RIGHT	00000000	0	
1	THRI	117 117 117 117 117 117 117 117 117 117	608	
	LEFT	73 73 75 75 73 71 73 71 73 71 73 71 73	346	
	U-1URN	00000000	0	
	TOTAL	203 185 145 250 250 250 250 250 250	968 0.81	
	RTOR	54 55 55 55 55 55 55 55 55 55 55 55 55 5	56	
	RIGHT	56 57 57 57 57 57 57 57 57 57 57 57 50 57 50 50 50 50 50 50 50 50 50 50 50 50 50	244	
NORTHE	THRU	105 109 109 100 105 155 195 184 184	668	
	LEFT	00000000	0	
	U-TURN		0	↓
	TOTAL	00000000	####	
	RTOR	00000000	0	
dNN08.	RIGHT	00000000	0	
WEST	THRU	00000000	•	
	LEFT	00000000	0	
	U-TURN	00000000	0	
	Total	326 456 455 551 551 551 551 551	2141 0.97	
	RTOR	0000800	53	
BOUND	RIGHT	4 15 15 15 15 15 15 15 15 15 15 15 15 15	82	
EASI	THRU	215 215 306 350 350 350 350 350 350	1429	
	I LEFT	100 136 137 137 158 158 158	607	
	ป-Tบสง	00000000	•	
START TIME		4:00 PM 4:15 PM 4:15 PM 4:15 PM 6:20 PM 5:20 PM 5:20 PM 5:20 PM 5:20 PM 5:21 PM 5:22 PM	5:00-6:00 PM PHF	

Nelson & Pope

INTERSECTION: LIE SOUTH SERVICE ROAD @ OLD NICHOL'S ROAD

PROJECT TITLE: THE PRESERVE @ ISLANDIA

		CUM. Holiai y	1574 1554 1755 1755 1755 1800 1799 1799	1800		
		TOTAL	4 4 2 3 2 4 4 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1840		
			142 142 155 155 155 155 155 155 155 155 155 15	685	6	ţ
		COT U		0		
		BOUND	000000000000000000000000000000000000000	0		
			88 ≡ 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	445		
	5		50 22 5 7 2 0 2 7 0 5 7	239		
GF OF		14-T IIIN	0000000000000	0		
VILIA		TOTAL	95 126 134 134 138 138 157 157 157 157 157	585	0.93	
ICTION:		RTOR	027400080C==	64		
JURISD		RIGHT	3433334633538	125		
	Moert	THRU	57 88 105 103 103 103 103 103 103 103 103 103 103	396		
		LEFT	000000000000000000000000000000000000000	0		
		U-TURN		0		
		TOTAL		0	***	
		RTOR	000000000000000000000000000000000000000	0		
	GN/TOB.	RIGHT	000000000000	0		
	West	Тняц	**********	0		
		LEFY		0		
		U-TURN		•		
AΥ		TOTAL	93 127 127 143 143 143 143 143 143 143 143 143 143	570	0.91	
A TURD,		RTOR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	õ		
/07 S/	DNDOB.	RIGHT	ғФғиœ@たаФғла	20		
ECTED: 11/17/(EAST	THRU	20 20 20 20 20 20 20 20 20 20 20 20 20 2	108		
		I LEFT	66 83 10 10 10 10 10 10 10 10 10 10 10 10 10	412		
TE COLI		U-TURN	000000000000	•		
DAT	START TIME		11:00 AM 11:15 AM 11:15 AM 11:25 AM 11:25 AM 12:15 PM 12:15 PM 12:25 PM 12:25 PM 12:35 PM 13:0 PM 14:5 PM 14:5 PM 14:5 PM	12:45-1:45 PM	HHE	

NELSON & POPE

INTERSECTION: LIE NORTH SERVICE ROAD @ OLD NICHOL'S ROAD

PROJECT TITLE: THE PRESERVE @ ISLANDIA

	Γ	•	-	1	-1-	Г
	_			2931 3253 3504 3550		
		TOTAL		602 758 777 794 904 917 889 840 840 3550		
			IOTAL	180 257 257 257 257 191 191 250 213 213 213 213 213 213	76.0	, ;
			אוחא	0-000000 0		
			ענפעו	87 127 119 129 134 134 134 134 134 132 91 120		
DIA		NTUO2	7112 I	93 129 131 151 151 150 150 150 150 150 150 150 15		
ISLAN				000000000		
GE OF		T TIME		00000000 0		
VILLA		Total		79 109 125 125 170 171 170 171 170 171 170 171	0.98	
CTION:		anta		00000000000000		
JURISDI		BICHT		00000000 0		
1	NOPTU	THRIT		46 77 93 93 102 112 101 112 101 112 103 112 123 448		
		i FFT		33 32 32 32 48 48 69 69 69 69 69 52 52 231		
		U-Turn		00000000 0		
		TOTAL		343 343 392 492 495 496 504 456 456	0,96	
		RTOR		NNN0-00M 4		
	BOUND	RIGHT		₽ 55588220		
	WEST	Тнви		260 318 337 357 360 395 411 411 362 1583		
		LEFT		64 63 70 70 70 69 69 69 276		
		UTURN		00000000 0		
UAY		TOTAL		000000000	####	
EUNES		RTOR		00000000 0		
M /N	GNNDE	RIGHT		0000000 0		
11/14/	EAST	THRU				
		LEFT		00000000		
		U-TURN	,			
	START TIME			7:00 AM 7:30 AM 7:30 AM 8:00 AM 8:15 AM 8:15 AM 8:15 AM 8:15 AM 8:15 AM 8:10 AM 9:00 AM	7HT	

NELSON & POPE

INTERSECTION: LIE NORTH SERVICE ROAD @ OLD NICHOL'S ROAD

PROJECT TITLE: THE PRESERVE @ ISLANDIA

		CUM.	HOURLY	2142 2314 2477 2569 2717 2569			
		TOTAL		494 5574 5574 557 557 557 557 557 557 666 665 649 649 649 665			
			TOTAL	187 187 184 184 182 182 208 180 180 801 801	CB 0	, n. ,	
			RTOR	0000000 o			
		DUNDE	RIGHT	62 53 59 55 57 56 56 212 212			
		NUTH	THRU	125 131 131 124 150 150 144 146 175 175 175 175			
			LEFT	000000000			
AGE OF			U-TURN	00000000			
VILLA			TOTAL	194 248 227 227 221 221 318 349 316 316 286 286	0.91		
ICTION:			RTOR	000000000000000000000000000000000000000			
JURISD			Right				
	Nort		THRU	168 227 217 257 257 257 227 254 240 940			
			LEFT	26 26 26 26 81 81 81 82 44 42 52 92 529			
			U-LURN	000000000000000000000000000000000000000			
			1 0TAL	113 142 156 156 166 166 153 153 153 153	0.90		
			ж К	ი ი ი ი ი ი ი ი ი ი ი ს ი ს ს ს ს ს ს ს			
	GNUDE.	1010	нын	20 20 20 20 20 20 20 20 20 20 20 20 20 2			
	WEST	E	пуш 1	49 66 51 51 55 38 53 38 52 52 6 206			
		1 221		35 48 60 65 65 65 65 65 65 62 84 8 24 8			
		11-71IDN		0000000 0			
DAΥ		TOTAL		0000000 0	####		
/EDNES		ACTA		00000000 0			
LECTED: 11/14/07 WE	TBOUND	RIGHT		00000000000			
	EAS	THRU		00000000 0			
		N LEFT		00000000000			
ATE COL		U-Tun		000000000			
	START TIME			4:00 PM 4:05 PM 4:15 PM 4:15 PM 5:05 PM 5:15 PM 5:15 PM 5:00 PM 6:00 PM	PHF		

NELSON & POPE

INTERSECTION: LIE NORTH SERVICE ROAD @ OLD NICHOL'S ROAD

PROJECT TITLE: THE PRESERVE @ ISLANDIA

	Ŭ.,	JURLY				181		101/		200	104	105	/06/	8/6	/06		
		IAL H	75	2 9		<u>,</u> 9	- 	5 0			 2 -		- : 	<u>, 1</u>	1 82		
		2 T - T		÷ ť		- t	- i	f 3	f -	Ťμ	5	f :	25		C ⁴⁷	1	_
		TOTA	205	6 <u>0</u> 2	18.R	160	22	187	201	35	777		n 12	2	76B	0 03	
		RTOR	- C	00		• c	, _	- ¢) =	: C	20	- -		- <	5 N		
ISLANDIA	HBOUND	RIGHT	F	- 0 - 0	679	9 20 20	0 u 0 v	202	22	2 2	3 6	15	67	25	274		
	Souti	Thru	821	<u>]</u> =	2	104	70	137	2	100	<u>i</u> 5	121	<u>i</u> ř	2 5	767		
		LEFT	c	00	0	0	c	Ċ	c	00	• 0	, c	00	5 0	0		
GE OF		U-Turn	c	00	0	0	C	• •	c			• <) c	20			
		TOTAL	071	157	137	172	185	621	138	88	U U	2 4	IBO 1	2 4	735	0.98	
CTION:		RTOR	c	00	0	0	0	0	C	c	c	00	• •		0		
JURISDI	ONNOS	RIGHT	•	00	0	0	0	0	0	0	c	- C	• c				
	NORTHE	Тняи	8	172	126	148	176	163	126	791	58	99	1.51	177	651		
		LEFT	22	2	=	24	ው	16	2	24	22	2	i 1	71	78		
		UTurn	0	0	0	0	0	0	0	0	0	c	0	• c	0		
		TDTAL	5	171	104	107	126	123	130	136	107	127	105	ŝ	475	0.87	
		RTOR	20	8	17	5	6	5	¢	14	20	2	6	0	55		
	auno	RIGHT	ß	32	77	22	32	32	8	32		27	21	22	86		
	WESTB	Тнви	6£	53	55	52	34	30	37	75	56	79	35	32	149		
		LEFT	70	38	38	40	11	48	56	48	39	75	44	52	173		
		U-TURN	0	0	0	0	0	a	0	0	0	0	0	0	¢		
7		TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	¢	####	
COLLECTED: 11/17/07 SATURDAY		RTOR	D	0	0	0	0	0	0	0	0	0	0	0	0		
	DND	Right	0	0	0	0	0	0	0	0	0	0	0	0	0		
	EASTB	Тняц	0	0	0	0	0	0	0	0	0	0	0	٥	o		
		LEFT	0	0	0	o	0	o	o	0	0	0	0	0	0		
		U-TURN	0	0	0	0	0	0	0	0	0	0	0	0	0		
DATE	START TIME	-	11:00 AM	ILIS AM	11:30 AM	MA 2241	12:00 PM	12:15 PM	12:30 PM	12:45 PM	1:00 PM	I:IS PM	I:30 PM	1:45 PM	PEAK HOUR: 12:45-1:45 PM	PHF	

Appendix B: Trip Generation

Summary of Trip Generation Calculation For 25 Dwelling Units of Residential Condominium / Townhouse March 26, 2008

	Average	Standard	Adjustment	Driveway
	Rate	Deviation	Factor	Volume
Avg. Weekday 2-Way Volume	7.90	0.00	1.00	198
7-9 AM Peak Hour Enter	0.12	0.00	1.00	3
7-9 AM Peak Hour Exit	0.57	0.00	1.00	14
7-9 AM Peak Hour Total	0.68	0.00	1.00	17
4-6 PM Peak Hour Enter	0.52	0.00	1.00	13
4-6 PM Peak Hour Exit	0.25	0.00	1.00	6
4-6 PM Peak Hour Total	0.77	0.00	1.00	19
AM Pk Hr, Generator, Enter AM Pk Hr, Generator, Exit AM Pk Hr, Generator, Total PM Pk Hr, Generator, Enter PM Pk Hr, Generator, Exit PM Pk Hr, Generator, Total Saturday 2-Way Volume Saturday Peak Hour Enter Saturday Peak Hour Exit Saturday Peak Hour Total Sunday 2-Way Volume Sunday Peak Hour Enter	0.12 0.54 0.66 1.20 0.67 1.87 20.74 1.08 0.92 2.00 17.42 1.09	0.00 0.00	$ \begin{array}{c} 1.00\\ 1.00$	3 14 17 30 17 47 518 27 23 50 436 27
Sunday Peak Hour Exit	1.14	0.00	1.00	28
Sunday Peak Hour Total	2.23	0.00	1.00	56

Note: A zero indicates no data available. The above rates were calculated from these equations:

2-Way Volume:	$LN(T) = .85LN(X) + 2.55, R^2 = 0.83$
Peak Hr. Total:	LN(T) = .8LN(X) + .26
	$R^2 = 0.76$, 0.17 Enter, 0.83 Exit
Peak Hr. Total:	LN(T) = .82LN(X) + .32
	$R^2 = 0.8$, 0.67 Enter, 0.33 Exit
Pk Hr. Total:	LN(T) = .82LN(X) + .17
	$R^2 = 0.8$, 0.18 Enter, 0.82 Exit
Pk Hr. Total:	T = .34(X) + 38.31
	$R^2 = 0.83$, 0.64 Enter, 0.36 Exit
Way Volume:	$T = 3.62(X) + 427.93, R^2 = 0.84$
Hr. Total:	T = .29(X) + 42.63
	$R^2 = 0.84$, 0.54 Enter, 0.46 Exit
Way Volume:	$T = 3.13(X) + 357.26, R^2 = 0.88$
Hr. Total:	T = .23(X) + 50.01
	$R^2 = 0.78$, 0.49 Enter, 0.51 Exit
	2-Way Volume: Peak Hr. Total: Peak Hr. Total: Pk Hr. Total: Pk Hr. Total: Way Volume: Hr. Total: Way Volume: Hr. Total:

Source: Institute of Transportation Engineers Trip Generation, 7th Edition, 2003.

TRIP GENERATION BY MICROTRANS

Summary of Trip Generation Calculation For 47 Dwelling Units of Elderly Housing - Detached March 26, 2008

	Average Rate	Standard Deviation	Adjustment Factor	Driveway Volume
Avg. Weekday 2-Way Volume 7-9 AM Peak Hour Enter 7-9 AM Peak Hour Exit 7-9 AM Peak Hour Total 4-6 PM Peak Hour Total 4-6 PM Peak Hour Enter 4-6 PM Peak Hour Exit 4-6 PM Peak Hour Total AM Pk Hr, Generator, Enter AM Pk Hr, Generator, Enter AM Pk Hr, Generator, Total PM Pk Hr, Generator, Exit PM Pk Hr, Generator, Total Saturday 2-Way Volume Saturday Peak Hour Enter	Rate 6.06 0.12 0.31 0.37 0.24 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Deviation 0.000 0.00	Factor 1.00	Volume 285 6 9 15 17 11 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Saturday Peak Hour Exit Saturday Peak Hour Total Sunday 2-Way Volume Sunday Peak Hour Enter Sunday Peak Hour Exit Sunday Peak Hour Total	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00 1.00	0 0 0 0 0

Note: A zero indicates no data available. The above rates were calculated from these equations:

24-Hr. 2-Way Volume:	LN(T) :	=	.8	5LN	(X) +	2.38	, R^2 =	0.98
7-9 AM Peak Hr. Total:	LN(T) :	-	.8(6LN	(X) + -	63		
	R^2 =	0.	.96	,	0.38	Ente	r, 0.62	Exit
4-6 PM Peak Hr. Total:	LN(T) :	-	.72	2LN	(X) +	.58		
	R^2 =	0.	. 88	,	0.61	Ente	r, 0.39	Exit
AM Gen Pk Hr. Total:	0							
	R^2 =	0	,	0	Enter,	0	Exit	
PM Gen Pk Hr. Total:	0							
	R^2 =	0	,	0	Enter,	. 0	Exit	
Sat. 2-Way Volume:	0, R^2	=	0					
Sat. Pk Hr. Total:	0							
	R^2 =	0	,	0	Enter,	0	Exit	
Sun. 2-Way Volume:	0, R^2	=	0					
Sun. Pk Hr. Total:	0							
	R^2 =	0	,	0	Enter,	0	Exit	

Source: Institute of Transportation Engineers Trip Generation, 7th Edition, 2003.

TRIP GENERATION BY MICROTRANS

Summary of Trip Generation Calculation For 47 Dwelling Units of Elderly Housing - Detached March 26, 2008

	Average Rate	Standard Deviation	Adjustment Factor	Driveway Volume
Avg. Weekday 2-Way Volume 7-9 AM Peak Hour Enter 7-9 AM Peak Hour Exit 7-9 AM Peak Hour Exit 4-6 PM Peak Hour Total 4-6 PM Peak Hour Exit 4-6 PM Peak Hour Total AM Pk Hr, Generator, Enter AM Pk Hr, Generator, Enter AM Pk Hr, Generator, Total PM Pk Hr, Generator, Exit PM Pk Hr, Generator, Exit PM Pk Hr, Generator, Total Saturday 2-Way Volume Saturday Peak Hour Enter Saturday Peak Hour Exit Saturday Peak Hour Total Sunday 2-Way Volume Sunday Peak Hour Enter Sunday Peak Hour Enter Sunday Peak Hour Enter Sunday Peak Hour Exit	3.71 0.08 0.12 0.20 0.16 0.10 0.26 0.16 0.15 0.31 0.21 0.14 0.35 2.77 0.13 0.14 0.27 2.33 0.11 0.10	2.04 0.00 0.45 0.00 0.51 0.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	174 4 6 9 8 5 12 8 7 15 10 7 16 130 6 7 13 110 5 5
Sunday Peak Hour Total	U.21	0.00	1.00	10

Note: A zero indicates no data available. Source: Institute of Transportation Engineers Trip Generation, 7th Edition, 2003.

TRIP GENERATION BY MICROTRANS

Appendix C: Level of Service Definitions

LEVEL OF SERVICE: SIGNALIZED INTERSECTIONS

Level of service for signalized intersections is defined in terms of delay, which is a measure of driver discomfort, frustration, fuel consumption, and lost travel time. The levels of service range between level of service A (relatively congestion-free) and level of service F (congested).

The delay experienced by a motorist is made up of a number of factors that relate to control, geometry, traffic, and incidents at an intersection. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during ideal conditions: in the absence of traffic control, in the absence of geometric delay, in the absence of any incidents, and when there are no other vehicles on the road. The portion of the total delay attributed to the control facility is called the control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Control delay may also be referred to as signal delay for signalized intersections.

Level of service criteria for signalized intersections is determined in terms of the average control delay per vehicle. The following average control delays are used to determine approach levels of service:

Level of Service A	≤ 10.0 seconds per vehicle
Level of Service B	> 10.0 and \leq 20.0 seconds per vehicle
Level of Service C	> 20.0 and ≤ 35.0 seconds per vehicle
Level of Service D	> 35.0 and ≤ 55.0 seconds per vehicle
Level of Service E	> 55.0 and \leq 80.0 seconds per vehicle
Level of Service F	> 80.0 seconds per vehicle

Level of Service A describes operations with very low control delay. This occurs when progression is extremely favorable; most vehicles arrive during the green phase and do not stop at all. Short traffic signal cycles may contribute to low delay.

Level of Service B generally occurs with good progression and/or short traffic signal cycle lengths. More vehicles stop than for level of service A, causing higher average delays.

Level of Service C has higher delays than level of service B. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures, where motorists are required to wait through an entire signal cycle, may begin to appear at this level. The number of vehicles stopping is significant, although many still pass through the intersection without stopping.

Level of Service D At this level, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths or high volume-to-capacity ratios. The proportion of stopping vehicles increases. Individual cycle failures are noticeable.

Level of Service E is considered the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures occur frequently.

Level of Service \mathbf{F} is considered unacceptable to most drivers. This condition often occurs with over saturation, i.e., when arrival flow rates exceed the capacity of the intersection. It may occur at volume to capacity ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also be major contributing causes to such delay levels.

LEVEL OF SERVICE: TWO WAY STOP CONTROLLED INTERSECTIONS

The quality of traffic service at a two-way stop controlled, or "TWSC," intersection is measured according to the level of service and capacity of individual legs. The level of service ranges from LOS A to LOS F, just as with signalized intersections.

The right of way at the TWSC intersection is controlled by stop signs on two opposing legs of an intersection (on one leg of a "T"-type intersection). The capacity of a controlled leg is based on the distribution of gaps in the major street traffic flow, driver judgment in selecting a gap through which to execute the desired maneuver and the follow up time required by each driver in a queue.

The level of service for a TWSC intersection is determined by the computed or measured control delay and is defined for each minor movement. Level of service is not defined for the intersection as a whole. The delay experienced by a motorist is made up of a number of factors that relate to control, geometry, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during conditions with ideal geometry and in the absence of incidents, control, and traffic. This program only quantifies that portion of the total delay attributed to traffic control measures, either traffic signals or stop signs. This delay is called control delay. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration. Average control delay for any particular minor movement is a function of the approach and the degree of saturation.

The expectation is that TWSC intersections are designed to carry smaller traffic volumes than signalized intersections. Therefore, the delay threshold times are lower for the same LOS grades. The following average control delays are used to determine approach levels of service:

Level of Service A	≤ 10 seconds per vehicle
Level of Service B	> 10 and ≤ 15 seconds per vehicle
Level of Service C	> 15 and \leq 25 seconds per vehicle
Level of Service D	> 25 and \leq 35 seconds per vehicle
Level of Service E	> 35 and \leq 50 seconds per vehicle
Level of Service F	> 50 seconds per vehicle

Appendix D: Capacity Analysis/Level of Service Worksheets & Summary Tables

THE PRESERVE AT ISLANDIA

NELSON & POPE

İ

Intersection Approach Movt. V Intersection Approach WB L V WB T T V NB T T SB SB T T Corrall SB T T LIE North Servce Road at Old Nichols Road NB T Doerall SB T Control SB T NB T T LIE South Servce Road at Old Nichols Road NB T	t. V/C Ratio L 0.25 TR 0.87 L 0.25 TR 0.34 T 0.34 R 0.99 Verall 0.99 TR 0.08		E	No Bt	uild Condition	2007	, Bui	ld Condition 2	007
LIE North Servce Road at Old Nichols Road SB T SB T SB T SB T Overall CVerall LIE South Servce Road at Old Nichols Road LIE South Servce Road at Old Nichols Road	L 0.25 TR 0.87 L 0.67 T 0.57 T 0.27 R 0.99 Verall 0.99 TR 0.09	Delay Sec/Veh	ros	V/C Ratio	Delay Sec/Veh	ros	V/C Ratio	Delay Sec/Veh	ros
LIE North Servce Road at Old Nichols Road Road Road Road Prove Road at Old Nichols Road Road Road LES outh Servce Road at Old Nichols Road Road Road Road Road Road Road Road	TR 0.87 L 0.67 T 0.27 T 0.34 R 0.39 Verall 0.44 T 0.08	20.4	0	0.25	20.5	C	0.25	20.5	C
LIE North Servce Road at Old Nichols Road SB R R C C C C C C C C	L 0.67 T 0.27 R 0.34 Netall 0.99 TR 0.08	32.9	υ	0.89	34.2	U	0.89	34.2	י ט
LIE South Servce Road at Old Nichols Road	T 0.27 T 0.34 R 0.99 Verall 0.44 T 0.08	48.3	D	0.69	49.0	D	0.71	50,1	D
LIE South Servce Road at Old Nichols Road	T 0.34 R 0.99 Verall 0.44 T 0.08	15.5	В	0.27	15.5	В	0.27	15.5	B
LIE South Servce Road at Old Nichols Road at Old Nichols Road	R 0.99 Verall L 0.44 TR 0.08	25,9	υ	0.35	26.0	ပ	0.35	26.0	J
Overall EB EB TR TR NB T R R R	verall L 0.44 TR 0.08	70.4	ш	1.01	76.7	ы	1.01	76.7	ш
LIE South Servce Road at Old Nichols Road Serve Road at Old Nichols Road Serve Road T	L 0.44	34.6	С		36.1	D		36.2	D
LIE South Servce Road at Old Nichols Road Road Serve Road at Old Nichols Road Server Road R	TR 0.08	34.0	D	0,45	34.2	U	0.45	34.2	C
LIE South Servce Road at Old Nichols Road R		29.6	υ	0.08	29.7	ပ	0.09	29.7	U
and and a second se	17.0 1	14.9	ш	0.22	14.9	В	0.22	14.9	ന
	R 0.16	14.5	в	0.17	14.5	В	0.17	14.6	ш
	L 0.59	45.2	۵	0.61	45.7	D	0.61	45.7	۵
F	T 0.32	8.0	۲	0.33	8.1	А	0.33	8.1	۲
Overall	verall	20.0	в		20.1	C		20,1	υ
	L 0.17	30.6	υ	0.19	31.9	c	0.19	31.9	C
	T 0.72	37.9	D	0.74	38.5	۵	0.74	38.5	D
8	R 0.07	25.4	υ	0.07	25.5	υ	0.07	25.5	U
WB	L 0.78	37.0	۵	0.82	43.9	۵	0.82	43.9	D
	T 0.79	25.5	υ υ	0.80	26.3	ပ	0.80	26.3	ບ
N YS Koute 424 at Nichols Koad	R 0.32	28.5	υ	0.33	28.6	υ	0.33	28.7	υ
NB	L 0.76	68,1	ш	0.80	76.3	ш	0.81	79.0	ш
	T 0.48	43.6	۵	0.49	42.8	۵	0.50	43.8	۵
	R 0.70	51.6		0,71	52.5	۵	0.71	52.5	۵
SB	L 0.82	68.2	ш	0.86	74.9	ш	0.88	79.2	ല
TR	TR 0.78	51.7	٥	0.79	52.6	۵	0.80	53.0	۵
Overall	verall	38.6	D		40.0	۵		40.4	D
Site Access at Nichols Road SB LT	LT -	•	£	ŧ	1	ı	0.00	8.6	A
WB	-	3	1	3		1	0.11	22.1	U

NELSON & POPE

	U,
•	-
	Ľ.
	2
	~
	2
	Н
•	≺
	•
	1
	Ξ
	¢
- 2	T
. *	
_	Ý
	2
	2
	5
	-
4	-
	>
- 7	
	1
	5
	È
	arv
	narv
	marv
	nmarv
	mmarv
	ummarv
ſ	Summarv
c	Summary
	o oummarv
	Jo Summary
	Us summary
	LUS Summary
	I LUS Summary
	id LUS Summary
	led LUS Summary
	iled LUS Summary
	alled LUS Summary
	statied LUS Summary
	etailed LUS Summary
	Uetailed LUS Summary
	Detailed LUS Summary

				T _ ATRITTI	TAT T COV		ciclu				
			<u>6</u>	kisting Conditi	no	No B	uild Condition	1 2007	đ	lid Condition 2	2003
				Delay	TOS		Delay	ros		Delay	SUT
Intersection	Approach	Movt.	V/C Ratio	Sec/Veh		V/C Ratio	Sec/Veh		V/C Ratio	Sec/Veh	
	WB		0:30	27.7	C	15.0	27.8	C	0.32	27.9	U
		TR	0.27	27.2	υ υ	0.28	27.3	ပ	0.28	27.3	0
LIE North Servce Road at Old Nichols Road	BN	L L	0.45	33.2	U	0.46	33.3	U	0.47	33.4	υ
		F-	0.50	12.6	щ	0,52	12.7	В	0.52	12.7	в
	SB	⊢ ¢	0.52	30.1	с (0.54	30.2	с	0.54	30.3	υ
			<u>cc.n</u>	0.10		0.54	31.2	U	0.54	31.2	U
		Overall		24.1	U		24.2	U		24.3	υ
	EB		0.42	20.5	U	0.43	20.7	J	0.43	20.7	υ
		Я Т	1.02	57.4	ц	1.05	65.1	ല	1.06	67.7	ш
LIE South Servce Road at Old Nichols Road	AN .	Η ,	0.94	53.4	۵	0.96	57.4	ш	0.97	59.5	ш
		×	0.79	45.6	D	0.82	47.9	Д	0.83	49.3	D
	SB	ľ	0.96	73.3	щ	0.98	78.9	ш	0.98	78.9	ш
		H	0.51	19.7	В	0.52	19.9	В	0.52	20.0+	υ
		Overall		45.8	D		49.9	۵		51.3	D
	EB		0.41	26.6	υ	0,44	27.2	U	0.45	27.2	U
		⊢ ~ ,	1.05	82.4	Į۲.	1.07	91.1	<u>14</u>	1.07	91.1	Ŀ
	;	R ,	0.06	27.5	U	0.07	27.6	υ	0.07	27.6	υ
	8 M		1.18	136.8	[1.21	172.6	Li.,	1.21	172.6	Ľ.
NVS Route 454 at Nichole Band		- (0.70	29.3	С -	0.71	29.8	υ	0.71	29.8	U
	Ę	×.	85.0	22.8	יט	0.39	22.9	U	0.40	23.0	υ
	9N	_] F	0.61	57.9	ш :	0,64	60.0	ш	0.64	60.5	ш
		- 1	0.95	81.8	<u>ل</u> ـــ	0.97	86.6	÷	0.98	88.7	í۳.
		R I	0.48	55.1	ш	0.50	55.5	ш	0.50	55.5	ш
	SB	L	1.02	107.2	Ŀ,	1.04	113.0	<u>لت</u>	1.05	117.8	ы
		Ĕ	0.50	47.3	۵	0.52	47.5	D	0.52	47.6	۵
		Overall		65.8	ш		72.1	E		72.6	ш
Site Access at Nichols Road	SB	LT	3	t		ı	,		0.04	11.5	В
	19M	FLK	,	1	1	•	1		0.16	40.9	ш

NELSON & POPE

-Detailed LOS Summary - Saturday Peak Hour A

	Deta	iled LC	S Summ	ıary - Satı	urday Pe	ak Hour /	Analysis				
			é)	xisting Condit	tion	No B	uild Condition	2007	B	ild Condition	2007
Information	-			Delay	ros		Delay	ros		Delay	ros
	Approach	Movt.	V/C Ratio	Sec/Veh		V/C Ratio	Sec/Veh		V/C Ratio	Sec/Veh	
	MB		0.21	18.3	æ	0.21	18.4	В	0.22	18.4	В
		AT .	0.22	18.3	B	0.22	18,3	В	0.22	18,3	m
LIE North Servce Road at Old Nichols Road	RN N		0.23	29.2	υ	0.24	29.2	ပ	0.26	29.3	υ
		- 1	0.47	12.1	в	0.48	12.2	В	0.48	12.2	ш
	SB	i→ ,	0,42	21.4	U	0.43	21.5	U	0.43	21.5	υ
		<u> </u>	0.73	29.6	U	0.75	30.7	ပ	0.75	30.7	U
		Overall		19.0	В		19.2	В		19.3	В
_	EB	1	0.46	21.0	υ	0.47	21.2	C	0.47	21.2	
		XI.	0.16	17.9	B	0.16	17.9	В	0.17	18.0	В
LIE South Servce Road at Old Nichols Road	NB	⊢ ,	0.48	21.9	υ	0.50	22.0	U	0.51	22.1	
	1	X	0.05	18.7	В	0.06	18.8	В	0.07	18.9) 12
	SB		0.62	32.7	U	0,63	33.1	U	0.63	33.1	
		H	0.30	10.6	В	0.31	10.7	в	0.32	10.7) m
		Overall		19.8	B		19.9	m		20.0-	n ur
	EB	7	0.41	28.5	U	0.43	28.7	υ	0.43	28.7	
		ξ Ι	0.82	48.0	۵	0.84	49.2	D	0.84	49.2) Q
		×	0.16	33.4	υ	0,16	33,4	U	0.16	33.4	
	WB		0.65	27.9	U	0.68	30.5	J	0.68	30.5	
NYS Route 454 at Nichols Road		- c	0.66	28.5	0	0.67	28.9	U	0.67	28,9	υ
3300	Ę	Z -	0.40	24.2	ပ	0.41	24.4	υ	0.42	24.5	U
	SINI I	-) [0.40	39.7	۵	0.41	39.9	۵	0.41	39.9	D
<u></u>		- 1	0.74	49.9	۔ ۵	0.75	50.6	D	0.76	51.0	
	į	Υ.	0.64	49.5	ם	0.65	50.2	D	0.65	50.2	
	R SB		0.56	28.5	υ	0.58	29.2	U	0.61	30.0	Ċ
		Щ	0.41	35.2	D	0.42	35.3	D	0.43	35.4	
		Overall		37.0	D		37.8	۵		37.8	
Site Access at Nichols Road	SB	LT.	•	1	r	F			0.03	9.8	A C
	۵ <u>۸</u>	L K	•	1	•		1	1	0.16	26.3	Δ

Existing Condition

VOLUME ADJUSTMENT AND SATURATION FLOW RATE WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Volume Adjustment												
		EB			WB			NB			SB	<u>Br Carls (d. 40</u>
	LT	ТН	RT	LT	ТН	RT	LT	TH	RT	LT	ТН	RT
Volume	13	917	39	220	1340	173	80	342	210	174	587	70
PHF	0.91	0.91	0.91	0.87	0.87	0.87	0.75	0.75	0.75	0.91	0.91	0.91
Adjusted Flow Rate	14	1008	43	253	1540	195	107	456	275	191	645	77
Lane Group	L	Т	R	L	Т	R	L	T	R	L	TR	
Adjusted Flow Rate	14	1008	43	253	1540	195	107	456	275	191	722	
Proportion of LT or RT	1.000		1.000	1.000		1.000	1.000		1.000	1.000		0.107
Saturation Flow Rate												
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0
f _W	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000	
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fp	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	<u> </u>
f _{bb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	
f _{LT}	0.109	1.000		0.950	1.000		0.950	1.000		0.950	1.000	
Secondary f _{LT}			-	0.129	0.129		0.139	0.139	_	0.311	0.311	
f _{RT}	_	1.000	0.850		1.000	0.850	<u> </u>	1.000	0.850		0.984	
f _{Lpb}	1.000	1.000		1.000	1.000		1.000	1.000	-	1.000	1.000	
f _{Rpb}	_	1.000	1.000		1.000	1.000		1.000	1.000		1.000	- <u></u>
Adjusted Satflow	202	3428	1478	1711	3428	1478	1652	3547	1478	1652	3490	
Secondary Adjusted Satflow			_	233	444		241	492	_	541	1087	

CAPACITY AND LOS WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis												
		EB			WB			NB			SB	<u>97509239-3</u>
Lane Group	L	T	R	L	Т	R		Т	R	L	TR	<u> </u>
Adjusted Flow Rate	14	1008	43	253	1540	195	107	456	275	191	722	<u> </u>
Satflow Rate	202	3428	1478	1711	3428	1478	1652	3547	1478	1652	3490	<u> </u>
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Green Ratio	0.41	0.41	0.41	0.58	0.57	0.41	0.35	0.27	0.27	0.35	0.27	<u> </u>
Lane Group Capacity	83	1401	604	324	1961	604	141	945	394	233	930	
v/c Ratio	0.17	0.72	0.07	0.78	0.79	0.32	0.76	0.48	0.70	0.82	0.78	<u> </u>
Flow Ratio	0.07	0.29	0.03	0.13	0.45	0.13	0.04	0.13	0.19	0.04	0.21	<u> </u>
Critical Lane Group	N	N	N	N	Y	N	Y	N	N	N	N	
Sum Flow Ratios						0.72	2		<u>,,</u>		-l <u>-</u>	<u> </u>
Lost Time/Cycle						12.0	0				<u></u>	,
Critical v/c Ratio	0.79											
Lane Group Capacity, Control Delay, and LOS Determination												
		EB		WB			NB			SB		
Lane Group	L	Т	R	L	T	R	L	T	R	L	TR	<u></u>
Adjusted Flow Rate	14	1008	43	253	1540	195	107	456	275	191	722	
Lane Group Capacity	83	1401	604	324	1961	604	141	945	394	233	930	
v/c Ratio	0.17	0.72	0.07	0.78	0.79	0.32	0.76	0.48	0.70	0.82	0.78	
Green Ratio	0.41	0.41	0.41	0.58	0.57	0.41	0.35	0.27	0.27	0.35	0.27	<u>-</u> .
Uniform Delay d ₁	26.3	34.7	25.2	25.3	23.3	28.2	47.1	43.2	46.3	48.0	47.5	
Delay Factor k	0.50	0.50	0.50	0.33	0.33	0.11	0.31	0.11	0.26	0.36	0.33	<u>_</u>
Incremental Delay d ₂	4.3	3.2	0.2	11.7	2.2	0.3	21.0	0.4	5.4	20.2	4.2	
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Control Delay	30.6	37.9	25.4	37.0	25.5	28.5	68.1	43.6	51.6	68.2	51.7	<u> </u>
Lane Group LOS	С	D	С	D	С	С	E	D	D	E	D	· · · · · · · · · · · · · · · · · · ·
Approach Delay	37	.3		27	7.2		49	9.4			55.1	
Approach LOS	Ľ)		(0			ס	•••		E	
Intersection Delay	38	.6				Intersec	tion LOS	3			D	

Copyright © 2005 University of Florida, All Rights Reserved

Generaled: 12/4/2007 11:42 At

VOLUME ADJUSTMENT AND SATURATION FLOW RATE WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

volume Adjustment													
	EB				WB			NB		SB			
	LT	TH	RT	LT	ТН	RT	LT	TH	RT	LT	TH	RT	
Volume	75	1306	45	358	1117	285	118	584	248	218	377	35	
PHF	0.90	0.90	0.90	0.92	0.92	0.92	0.90	0.90	0.90	0.88	0.88	0.88	
Adjusted Flow Rate	83	1451	38	389	1214	285	131	649	138	248	428	40	
Lane Group	L	T	R	L	Т	R	L	Т	R	L	TR		
Adjusted Flow Rate	83	1451	38	389	1214	285	131	649	138	248	468		
Proportion of LT or RT	1.000	_	1.000	1.000		1.000	1.000		1.000	1.000		0.085	
Saturation Flow Rate									And Andrews				
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0	
f _w	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000		
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980		
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
fp	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f _{bb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f _a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	· · · ·	
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	· · · · ·	
f _{LT}	0.950	1.000		0.950	1.000	_	0.950	1.000		0.950	1.000		
Secondary f _{LT}	0.160	0.160	-	0.060	0.060		0.471	0.471		0.114	0.114		
f _{RT}		1.000	0.850	-	1.000	0.850		1.000	0.850	-	0.987		
f _{Lpb}	1.000	1.000		1.000	1.000		1.000	1.000	-	1.000	1.000		
f _{Rpb}	_	1.000	1.000		1.000	1.000	-	1.000	1.000	-	1.000		
Adjusted Satflow	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3501		
Secondary Adjusted Satflow	299	550		108	206		820	1672		199	400		

CAPACITY AND LOS WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis													
	EB				WB			NB			SB		
Lane Group	L	T	R	L	Т	R	L	T	R	L	TR	1	
Adjusted Flow Rate	83	1451	38	389	1214	285	131	649	138	248	468		
Satflow Rate	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3501	<u> </u>	
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Green Ratio	0.45	0.40	0.40	0.61	0.51	0.51	0.23	0.19	0.19	0.35	0.26		
Lane Group Capacity	202	1385	597	329	1744	752	215	686	286	244	927	+	
v/c Ratio	0.41	1.05	0.06	1.18	0.70	0.38	0.61	0.95	0.48	1.02	0.50	<u> </u>	
Flow Ratio	0.05	0.42	0.03	0.16	0.35	0.19	0.03	0.18	0.09	0.12	0.13	<u> </u>	
Critical Lane Group	N	N	N	Y	N	N	N	N	N	Y	N		
Sum Flow Ratios		1.54										<u> </u>	
Lost Time/Cycle	12.00												
Critical v/c Ratio		1.68											
Lane Group Capacity,	Contro	ol Dela	y, and	LOS	Determ	inatior	1	All and a second	A second				
		EB			WB	<u> </u>		NB			SB		
Lane Group	L	T	R	L	Т	R	L	Т	R	L	TR		
Adjusted Flow Rate	83	1451	38	389	1214	285	131	649	138	248	468		
Lane Group Capacity	202	1385	597	329	1744	752	215	686	286	244	927	·	
v/c Ratio	0.41	1.05	0.06	1.18	0.70	0.38	0.61	0.95	0.48	1.02	0.50	·	
Green Ratio	0.45	0.40	0.40	0.61	0.51	0.51	0.23	0.19	0.19	0.35	0.26		
Uniform Delay d ₁	25.3	44.7	27.3	28.0	28.0	22.4	52.9	59.7	53.8	45.3	46.8		
Delay Factor k	0.11	0.50	0.50	0.50	0.26	0.11	0.20	0.46	0.11	0.50	0.11		
Incremental Delay d ₂	1.4	37.7	0.2	108.8	1.2	0.3	5.0	22.1	1.3	61.9	0.4		
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Control Delay	26.6	82.4	27.5	136.8	29.3	22.8	57.9	81.8	55.1	107.2	47.3	······································	
Lane Group LOS	С	F	С	F	С	С	E	F	E	F	D		
Approach Delay	78	3.1		50.4			7.	74.4			68.0		
Approach LOS	E	=		D				E			E	<u></u> -	
Intersection Delay	65.8					Intersed	tion LOS	ion LOS			E		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 11:43 A:

VOLUME ADJUSTMENT AND SATURATION FLOW RATE WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

the second	the second se	
	and the second	
and the second sec	and an	
	Sauthened and a second s	

Volume Adjustment												의 일관에 가지 않 2019년 1월 1919년 1월 1	
	EB				WB			NB			SB		
	LT	ТН	RT	LT	ТН	RT	LT	TH	RT	LT	TH	RT	
Volume	95	714	60	272	862	225	90	471	171	164	304	53	
PHF	0.91	0.91	0.91	0.90	0.90	0.90	0.94	0.94	0.94	0.88	0.88	0.88	
Adjusted Flow Rate	104	785	66	302	958	250	96	501	181	186	345	60	
Lane Group	L	Т	R	L	Т	R	L	Т	R	L	TR	-	
Adjusted Flow Rate	104	785	66	302	958	250	96	501	181	186	405		
Proportion of LT or RT	1.000	_	1.000	1.000	-	1.000	1.000		1.000	1.000		0.148	
Saturation Flow Rate								and by particular to the second					
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	<u>kerus kende</u>	
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0	
f _w	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000		
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980		
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
fp	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f _{bb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
fa	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952		
f _{LT}	0.950	1.000	_	0.950	1.000	_	0.950	1.000		0.950	1.000		
Secondary f _{LT}	0.271	0.271		0.125	0.125		0.514	0.514	_	0.200	0.200	_	
f _{RT}	-	1.000	0.850	_	1.000	0.850	-	1.000	0.850	_	0.978		
f _{Lpb}	1.000	1.000		1.000	1.000		1.000	1.000	_	1.000	1.000		
f _{Rpb}		1.000	1.000		1.000	1.000		1.000	1.000		1.000		
Adjusted Satflow	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3468	<u></u>	
Secondary Adjusted Satflow	504	928		225	428		894	1824		348	695		

CAPACITY AND LOS WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis													
	EB				WB			NB			SB		
Lane Group	L	Т	R	L	Т	R	L	T	R	L	TR	1	
Adjusted Flow Rate	104	785	66	302	958	250	96	501	181	186	405		
Satflow Rate	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3468		
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	<u> </u>	
Green Ratio	0.34	0.28	0.28	0.56	0.43	0.43	0.23	0.19	0.19	0.39	0.28		
Lane Group Capacity	256	960	414	463	1460	629	241	680	283	333	983		
v/c Ratio	0.41	0.82	0.16	0.65	0.66	0.40	0.40	0.74	0.64	0.56	0.41		
Flow Ratio	0.06	0.23	0.04	0.18	0.28	0.17	0.04	0.14	0.12	0.11	0.12		
Critical Lane Group	N	Y	N	Y	N	N	N	Y	N	Y	N	<u> </u>	
Sum Flow Ratios	0.66										<u> </u>		
Lost Time/Cycle	24.00												
Critical v/c Ratio						0.82	2				<u></u>		
Lane Group Capacity, (Contro	ol Dela	y, and	LOS	Determ	inatior							
		EB			WB		NB SB					And	
Lane Group	L	T	R	L	Т	R	L	T	R	L	TR		
Adjusted Flow Rate	104	785	66	302	958	250	96	501	181	186	405		
Lane Group Capacity	256	960	414	463	1460	629	241	680	283	333	983		
v/c Ratio	0.41	0.82	0.16	0.65	0.66	0.40	0.40	0.74	0.64	0.56	0.41		
Green Ratio	0.34	0.28	0.28	0.56	0.43	0.43	0.23	0.19	0.19	0.39	0.28		
Uniform Delay d ₁	27.4	40.3	32.6	24.6	27.5	23.8	38.6	45.7	44.7	26.4	34.9		
Delay Factor k	0.11	0.50	0.50	0.23	0.23	0.11	0.11	0.29	0.22	0.16	0.11		
Incremental Delay d ₂	1.1	7.7	0.8	3.3	1.1	0.4	1.1	4.2	4.8	2.1	0.3		
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Control Delay	28.5	48.0	33.4	27.9	28.5	24.2	39.7	49.9	49.5	28.5	35.2		
Lane Group LOS	С	D	С	С	С	С	D	D	D	C	D		
Approach Delay	44	.9		27.7			48.5			33.1			
Approach LOS	Ĺ)		С				D			C		
Intersection Delay	37.0					Intersec	tion LOS	ion LOS			D		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 11:43 At

1

General Information

Volume Adjustment												
		EB			WB	2		NB			SB	
	LT	TH	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Volume	332	51	31			:		347	311	190	653	
PHF	0.91	0.91	0.91					0.98	0.98	0.89	0.89	
Adjusted Flow Rate	365	56	11					354	112	213	734	
Lane Group	L	TR						Т	R	L	Т	
Adjusted Flow Rate	365	67						354	112	213	734	
Proportion of LT or RT	1.000		0.164						1.000	1.000	_	0.000
Saturation Flow Rate												
Base Satflow	1900	1900						1900	1900	1900	1900	
Number of Lanes	2	2	0					2	1	2	2	
f _w	1.000	1.000						0.967	0.933	1.000	1.000	
f _{HV}	0.980	0.980						0.980	0.980	0.980	0.980	red
fg	1.000	1.000						1.000	1.000	1.000	1.000	
f _p	1.000	1.000				-		1.000	1.000	1.000	1.000	
f _{bb}	1.000	1.000						1.000	1.000	1.000	1.000	
f _a	1.000	1.000						1.000	1.000	1.000	1.000	
f _{LU}	0.971	0.952						0.952	1.000	0.971	0.952	
f _{LT}	0.950	1.000				-		1.000		0.950	1.000	-
Secondary f _{LT}									-			
f _{RT}		0.975	_					1.000	0.850		1.000	
f _{Lpb}	1.000	1.000	-					1.000		1.000	1.000	
f _{Rpb}		1.000					-	1.000	1.000	_	1.000	
Adjusted Satflow	3437	3459						3428	1478	3437	3547	
Secondary Adjusted Satflow						-			_			-

		CAPA		AND LOS	WORKS	SHEET				
General Information										
Project Description THE	PRESERVI	E @ ISLA	NDIA: ()7246						
Capacity Analysis										
		EB		WE	3	NB			SB	
Lane Group		TR				Τ	R	L	Т	1
Adjusted Flow Rate	365	67	i i			354	112	213	734	1
Satflow Rate	3437	3459				3428	1478	3437	3547	
Lost Time	2.0	2.0				2.0	2.0	2.0	2.0	<u>† </u>
Green Ratio	0.24	0.24				0.49	0.49	0.10	0.64	
Lane Group Capacity	825	830				1663	717	361	2288	<u> </u>
v/c Ratio	0.44	0.08			1	0.21	0.16	0.59	0.32	
Flow Ratio	0.11	0.02				0.10	0.08	0.06	0.21	<u> </u>
Critical Lane Group	Y	N			1	N	N	N	Y	<u> </u>
Sum Flow Ratios					0.3	31			-l	.L
Lost Time/Cycle					11.	50			· · · · · · · · · · · · · · · · · · ·	
Critical v/c Ratio					0.3	35				. <u> </u>
Lane Group Capacit	y, Contro	l Delay	and L	OS Deter	minatior	1				
		EB		WE	3	NB			SB	<u>4877 (44 86 46 97)</u>
Lane Group	L	TR				τ	R	L	T	
Adjusted Flow Rate	365	67				354	112	213	734	
Lane Group Capacity	825	830				1663	717	361	2288	
v/c Ratio	0.44	0.08				0.21	0.16	0.59	0.32	1
Green Ratio	0.24	0.24				0.49	0.49	0.10	0.64	
Uniform Delay d ₁	32.3	29.5				14.8	14.3	42.7	7.9	1
Delay Factor k	0.50	0.50			Ĩ	0.11	0.11	0.18	0.11	
Incremental Delay d ₂	1.7	0.2				0.1	0.1	2.6	0.1	
PF Factor	1.000	1.000				1.000	1.000	1.000	1.000	1
Control Delay	34.0	29.6				14.9	14.5	45.2	8.0	
Lane Group LOS	С	C				В	В	D	A	
Approach Delay	3.	3.3				14.8			16.4	
Approach LOS		С				В			В	
Intersection Delay	20	0.0			Interse	ction LOS			В	

Copyright © 2005 University of Florida, All Rights Reserved

٣

HCS+TM Version 5.21

Generated: 12/4/2007 11:45 At ::

General Information

Volume Adjustment												
		EB			WB			NB			SB	
	LT	тн	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Volume	607	1429	105					668	300	346	608	
PHF	0.97	0.97	0.97					0.81	0.81	0.75	0.75	
Adjusted Flow Rate	626	1473	85					825	301	461	811	-
Lane Group	L	TR						Т	R	L	T	
Adjusted Flow Rate	626	1558						825	301	461	811	
Proportion of LT or RT	1.000	_	0.055						1.000	1.000		0.000
Saturation Flow Rate												
Base Satflow	1900	1900						1900	1900	1900	1900	
Number of Lanes	2	2	0					2	1	2	2	
f _w	1.000	1.000						0.967	0.933	1.000	1.000	
f _{HV}	0.980	0.980						0.980	0.980	0.980	0.980	
fg	1.000	1.000						1.000	1.000	1.000	1.000	
fp	1.000	1.000						1.000	1.000	1.000	1.000	
f _{bb}	1.000	1.000						1.000	1.000	1.000	1.000	
f _a	1.000	1.000						1.000	1.000	1.000	1.000	
f _{LU}	0.971	0.952						0.952	1.000	0.971	0.952	
f _{LT}	0.950	1.000						1.000	_	0.950	1.000	
Secondary f _{LT}						-			_			-
f _{RT}		0.992		-			_	1.000	0.850	_	1.000	
f _{Lpb}	1.000	1.000				_		1.000	-	1.000	1.000	
f _{Rpb}	-	1.000		-				1.000	1.000	-	1.000	
Adjusted Satflow	3437	3518						3428	1478	3437	3547	
Secondary Adjusted Satflow									_			_

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis								
		EB	WB	NB			SB	
Lane Group	L	TR		T	R	L	Т	
Adjusted Flow Rate	626	1558		825	301	461	811	
Satflow Rate	3437	3518		3428	1478	3437	3547	
Lost Time	2.0	2.0		2.0	2.0	2.0	2.0	
Green Ratio	0.43	0.43		0.26	0.26	0.14	0.45	
Lane Group Capacity	1488	1523		881	380	481	1603	
v/c Ratio	0.42	1.02		0.94 (0.79	0.96	0.51	
Flow Ratio	0.18	0.44		0.24	0.20	0.13	0.23	
Critical Lane Group	N	γ		Y	N	Y	N	
Sum Flow Ratios		-dene mannann -10	0.8	32		L		·
Lost Time/Cycle		·	17.	00			• <u></u> • <u>.</u>	<u> </u>
Critical v/c Ratio			0.9)9				
Lane Group Capacity, C	ontro	Delay, and	LOS Determination	1				
		EB	WB	NB	in and proper the second second second		SB	
Lane Group	L	TR		T	R	L	T	·
Adjusted Flow Rate	626	1558		825	301	461	811	4 <u></u>
Lane Group Capacity	1488	1523		881	380	481	1603	
v/c Ratio	0.42	1.02		0.94 (0.79	0.96	0.51	
Green Ratio	0.43	0.43		0.26	0.26	0.14	0.45	
Uniform Delay d ₁	19.7	28.4		36.4	34.7	42.7	19.5	
Delay Factor k	0.50	0.50		0.45 (0.34	0.47	0.11	
Incremental Delay d ₂	0.9	29.1		17.0	10.9	30.6	0.3	
PF Factor	1.000	1.000		1.000	1.000	1.000	1.000	
Control Delay	20.5	57.4		53.4	45.6	73.3	19.7	<u> </u>
Lane Group LOS	С	E		D	D	E	В	
Approach Delay	46	5.8		51.3			39.2	
Approach LOS	Ĺ)		D			D	······································
Intersection Delay	45	5.8	Interse	ction LOS			D	

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/4/2007 11:46 A

General Information

Volume Adjustment									The second se			
		EB			WB			NB			SB	
	LT	TH	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Volume	481	126	58					463	221	278	521	
PHF	0.91	0.91	0.91					0.93	0.93	0.94	0.94	
Adjusted Flow Rate	529	138	41					498	22	296	554	
Lane Group	L	TR						Т	R	L	т	
Adjusted Flow Rate	529	179						498	22	296	554	
Proportion of LT or RT	1.000		0.229		_				1.000	1.000	-	0.000
Saturation Flow Rate												
Base Satflow	1900	1900						1900	1900	1900	1900	
Number of Lanes	2	2	0					2	1	2	2	
fw	1.000	1.000						0.967	0.933	1.000	1.000	
f _{HV}	0.980	0.980						0.980	0.980	0.980	0.980	
f _g	1.000	1.000						1.000	1.000	1.000	1.000	
f _p	1.000	1.000						1.000	1.000	1.000	1.000	1
f _{bb}	1.000	1.000						1.000	1.000	1.000	1.000	
f _a	1.000	1.000						1.000	1.000	1.000	1.000	
f _{LU}	0.971	0.952						0.952	1.000	0.971	0.952	
f _{LT}	0.950	1.000				-		1.000		0.950	1.000	
Secondary f _{LT}										-		
f _{RT}	_	0.966		-				1.000	0.850	_	1.000	
f _{Lpb}	1.000	1.000						1.000	-	1.000	1.000	-
f _{Rpb}	-	1.000		_	-		-	1.000	1.000	-	1.000	
Adjusted Satflow	3437	3425						3428	1478	3437	3547	
Secondary Adjusted Satflow												

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis								
		EB	WB	NB			SB	
Lane Group	L	TR		Т	R	L	Т	
Adjusted Flow Rate	529	179		498	22	296	554	
Satflow Rate	3437	3425		3428	1478	3437	3547	
Lost Time	2.0	2.0		2.0	2.0	2.0	2.0	
Green Ratio	0.33	0.33		0.30	0.30	0.14	0.51	
Lane Group Capacity	1146	1142		1028	443	481	1821	
v/c Ratio	0.46	0.16		0.48	0.05	0.62	0.30	
Flow Ratio	0.15	0.05		0.15	0.01	0.09	0.16	
Critical Lane Group	Y	N		Y	N	Y	N	
Sum Flow Ratios		I I	0.39) 		-l	-l	<u> </u>
Lost Time/Cycle			17.0	0				
Critical v/c Ratio			0.50)				<u> </u>
Lane Group Capacity, C	ontro	Delay, and	LOS Determination					
		EB	WB	NB	- Name of a second state of the second		SB	<u>er ræssa fill</u>
Lane Group	L	TR		Т	R	L	T	
Adjusted Flow Rate	529	179		498	22	296	554	
Lane Group Capacity	1146	1142		1028	443	481	1821	
v/c Ratio	0.46	0.16		0.48	0.05	0.62	0.30	
Green Ratio	0.33	0.33		0.30	0.30	0.14	0.51	
Uniform Delay d ₁	19.7	17.6		21.5	18.7	30.3	10.5	
Delay Factor k	0.50	0.50		0.11	0.11	0.20	0.11	
Incremental Delay d ₂	1.3	0.3		0.4	0.0	2.4	0.1	
PF Factor	1.000	1.000		1.000	1.000	1.000	1.000	
Control Delay	21.0	17.9		21.9	18.7	32.7	10.6	
Lane Group LOS	С	В		С	В	С	В	
Approach Delay	20).2		21.7			18.3	·······
Approach LOS	(0		С			В	
Intersection Delay	19	9.8	Intersec	tion LOS		В		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 11:46 Al-

					FU	LL RE	POR	Т							
General Infor	mation					S	ite In	formatio	n						
Analyst			In	terse	ction	OLD NSR	NICHO	DLS R	2D @ I	LIE					
Agency or Co. Date Performe	ed 11/20/2007	POPE				A	rea T	ype	All o	ther are	eas				
Time Period	EXISTING	4 <i>M 200</i>	7			A	nalys	is Year	2007	7					
Intersection (Geometry														
Grade = 0		1 :	3												
					Gi	rade = 0	s	how North Am							
					*	0	**~	 = R = L = T	R R						
Grade -		2	2		G	rade = 0	م ر م	¥ = L Y = L ↓ = 1	. T . R . TR						
Volume and	Timing Input						10.0	7			D			00	
			LT		RT	LT	 TH		 L1		H	RT	LT		RT
Volume (vph))					324	158	³ 95	231	44	8			519	474
% Heavy Veh	1					2	2	2	2	2				2	2
PHF						0.96	0.96	0.96	0.9	3 0.9	8			0.94	0.94
Actuated (P/A	۹)					Р	Р	P	A	A				A	A
Startup Lost	Time					2.0	2.0		2.0	2.0	2			2.0	2.0
Extension of	Effective Gree	n				2.0	2.0		2.0	2.0	2			2.0	2.0
Arrival Type						3	3		3	3			<u> </u>	3	3
Unit Extensio	on					3.0	3.0)	3.0) 3.	0		1	3.0	3.0
Ped/Bike/RT	OR Volume				<u> </u>	0	0	4	0	0			0	0	0
Lane Width						12.0	12.0	,	12.	0 12.	.0		1	12.0	12.0
Parking (Y or	- N)					N	+	N	N			N	N	1	N
Parking/Hou			l				-		-						
Bus Stone/H	our					0	0		10				<u> </u>	0	0
Pedestrian T	imina			<u>.</u>	1		3.2			` 	2			<u> </u>	
				04		Thru & F	<u>,</u> т Т	NB O	- nly		07)8		
	G = 40.0	G =		G =		G =	G = 322		2	G = 10.2 (G =		G =	
Timing	G = 40.0 $G = G = G = 100Y = 6$ $Y = Y = 100$					Y =	= Y = 5.8			5.8 Y = 5.8 Y =			Y =		
Duration of A	Y = 6 Y = Y = tion of Analysis (hrs) = 0.25									Cycle Length		th C = 100.0			

General Information

Volume Adjustment												
		EB			WB			NB			SB	
	LT	TH	RT	LT	ТН	RT	LT	ТН	RT	LT	TH	RT
Volume				324	1583	95	231	448			519	474
PHF				0.96	0.96	0.96	0.98	0.98			0.94	0.94
Adjusted Flow Rate				338	1649	95	236	457			552	504
Lane Group				L	TR		L	Т			Т	R
Adjusted Flow Rate				338	1744		236	457			552	504
Proportion of LT or RT		-		1.000		0.054	1.000		0.000			1.000
Saturation Flow Rate												
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes				2	3	0	2	2			3	1
f _w				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
fg				1.000	1.000		1.000	1.000			1.000	1.000
f _p				1.000	1.000		1.000	1.000			1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000
f _a				1.000	1.000		1.000	1.000	-		1.000	1.000
f _{LU}		-		0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}				0.950	1.000	-	0.950	1.000			1.000	
Secondary f _{LT}									_			
f _{RT}				_	0.992			1.000		-	1.000	0.850
f _{Lpb}			_	1.000	1.000		1.000	1.000	-		1.000	
f _{Rpb}	-				1.000		-	1.000			1.000	1.000
Adjusted Satflow				3437	5033		3437	3547			5074	1583
Secondary Adjusted Satflow									-			_

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis							
	EB		WB		NB	SB	
Lane Group		L	TR	L	T	Τ	R
Adjusted Flow Rate		338	1744	236	457	552	504
Satflow Rate		3437	5033	3437	3547	5074	1583
Lost Time		2.0	2.0	2.0	2.0	2.0	2.0
Green Ratio		0.40	0.40	0.10	0.48	0.32	0.32
Lane Group Capacity		1375	2013	351	1710	1634	510
v/c Ratio		0.25	0.87	0.67	0.27	0.34	0.99
Flow Ratio		0.10	0.35	0.07	0.13	0.11	0.32
Critical Lane Group		N	Y	Y	N	N	Y
Sum Flow Ratios				0.73	<u> </u>		
Lost Time/Cycle				17.60			
Critical v/c Ratio				0.89			
Lane Group Capacity	, Control Delay, and	LOS	Determina	ation			
	EB		WB	and a first that a province of the second	NB	SB	
Lane Group		L	TR	L	Τ	T	R
Adjusted Flow Rate		338	1744	236	457	552	504
Lane Group Capacity		1375	2013	351	1710	1634	510
v/c Ratio		0.25	0.87	0.67	0.27	0.34	0.99
Green Ratio		0.40	0.40	0.10	0.48	0.32	0.32
Uniform Delay d ₁		20.0	27.5	43.3	15.4	25.8	33.7
Delay Factor k		0.50	0.50	0.24	0.11	0.11	0.49
Incremental Delay d ₂		0.4	5.3	5.0	0.1	0.1	36.7
PF Factor		1.000	1.000	1.000	1.000	1.000	1.000
Control Delay		20.4	32.9	48.3	15.5	25.9	70.4
Lane Group LOS		С	С	D	B	С	E
Approach Delay		3	0.8	20	6.6	47.1	. <u> </u>
Approach LOS			С		С	D	<u> </u>
Intersection Delay	34.6		Int	ersection LO	S	С	

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/4/2007 11:44 A

General Information

Volume Adjustment												
		EB			WB			NB			SB	<u> </u>
	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT
Volume				283	206	193	329	946			671	212
PHF				0.90	0.90	0.90	0.91	0.91			0.87	0.87
Adjusted Flow Rate				314	229	162	362	1040			771	244
Lane Group				L	TR		L	Т			Т	R
Adjusted Flow Rate				314	391		362	1040			771	244
Proportion of LT or RT				1.000	_	0.414	1.000		0.000			1.000
Saturation Flow Rate		1										
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes				2	3	0	2	2			3	1
fw				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
fg				1.000	1.000		1.000	1.000			1.000	1.000
f _p				1.000	1.000		1.000	1.000		-	1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000
f _a				1.000	1.000		1.000	1.000	-		1.000	1.000
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}				0.950	1.000	-	0.950	1.000			1.000	
Secondary f _{LT}			-						_			
f _{RT}	-				0.938		-	1.000		_	1.000	0.850
f _{Lpb}			_	1.000	1.000		1.000	1.000	-		1.000	
f _{Rpb}					1.000		-	1.000			1.000	1.000
Adjusted Satflow				3437	4759	nn <u> </u>	3437	3547		-	5074	1583
Secondary Adjusted Satflow			-									<u> </u>

General Information Project Description THE PRESERVE @ ISLANDIA: 07246 Capacity Analysis EB WB NB SB Lane Group L TR Т L Т 1040 Adjusted Flow Rate 314 391 362 771 3437 4759 3437 3547 5074 Satflow Rate Lost Time 2.0 2.0 2.0 2.0 2.0 Green Ratio 0.30 0.30 0.23 0.58 0.29 1031 1428 2064 1471 Lane Group Capacity 804 v/c Ratio 0.30 0.27 0.45 0.50 0.52 Flow Ratio 0.09 0.08 0.11 0.29 0.15 Critical Lane Group Y Ν Ν Y Ν Sum Flow Ratios 0.38 Lost Time/Cycle 11.80 Critical v/c Ratio 0.44 Lane Group Capacity, Control Delay, and LOS Determination EB WB NB SB Lane Group L TR L Т Т 1040 Adjusted Flow Rate 314 391 362 771 1031 1428 2064 1471 Lane Group Capacity 804 v/c Ratio 0.30 0.27 0.45 0.50 0.52 Green Ratio 0.30 0.30 0.23 0.58 0.29Uniform Delay d1 27.0 26.7 32.8 12.4 29.7 Delay Factor k 0.50 0.50 0.11 0.11 0.13 Incremental Delay d₂ 0.8 0.5 0.4 0.2 0.3 PF Factor 1.000 1.000 1.000 1.000 1.000 Control Delay 27.7 27.2 33.2 12.6 30.1 С Lane Group LOS С С В С

27.4

С

CAPACITY AND LOS WORKSHEET

Copyright © 2005 University of Florida, All Rights Reserved

24.1

Approach Delay

Approach LOS

Intersection Delay

Intersection LOS

17.9

В

Generated: 12/4/2007 11:44 At

30.3

С

С

R

244

1583

2.0

0.29

459

0.53

0.15

Ν

R

244

459

0.53

0.29

29.8

0.13

1.2

1.000

31.0

С

General Information

Volume Adjustment												
		EB			WB	,		NB			SB	
	LT	ТН	RT	LT	ТН	RT	LT	ТН	RT	LT	TH	RT
Volume				208	174	179	107	836			592	322
PHF				0.87	0.87	0.87	0.98	0.98			0.93	0.93
Adjusted Flow Rate				239	200	143	109	853			637	344
Lane Group				L	TR		L	Т			Т	R
Adjusted Flow Rate			1	239	343		109	853			637	344
Proportion of LT or RT		-		1.000		0.417	1.000	-	0.000			1.000
Saturation Flow Rate					-							
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes				2	3	0	2	2			з	1
f _w				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
fg		-		1.000	1.000		1.000	1.000			1.000	1.000
fp				1.000	1.000		1.000	1.000			1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000
f _a				1.000	1.000		1.000	1.000			1.000	1.000
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}				0.950	1.000	_	0.950	1.000			1.000	_
Secondary f _{LT}			-						_			
f _{RT}	-			-	0.937			1.000			1.000	0.850
f _{Lpb}			-	1.000	1.000		1.000	1.000	_		1.000	
f _{Rpb}	-				1.000			1.000		-	1.000	1.000
Adjusted Satflow				3437	4757		3437	3547			5074	1583
Secondary Adjusted Satflow						_		-				<u></u>

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis							
	EB		WB		NB	SB	
Lane Group		L	TR	L	T	Т	R
Adjusted Flow Rate		239	343	109	853	637	344
Satflow Rate		3437	4757	3437	3547	5074	1583
Lost Time		2.0	2.0	2.0	2.0	2.0	2.0
Green Ratio		0.33	0.33	0.14	0.51	0.30	0.30
Lane Group Capacity		1146	1586	467	1807	1502	469
v/c Ratio		0.21	0.22	0.23	0.47	0.42	0.73
Flow Ratio		0.07	0.07	0.03	0.24	0.13	0.22
Critical Lane Group		N	Y	Y	N	N	Y
Sum Flow Ratios	· · ·			0.32		J	_ <u></u>
Lost Time/Cycle				17.60			
Critical v/c Ratio		·					
Lane Group Capacity, C	ontrol Delay, and	LOS	Determin	ation			
	EB		WB		NB	SB	<u>an an an Shi si si</u>
Lane Group		L	TR	L	Τ	T	R
Adjusted Flow Rate		239	343	109	853	637	344
Lane Group Capacity		1146	1586	467	1807	1502	469
v/c Ratio		0.21	0.22	0.23	0.47	0.42	0.73
Green Ratio		0.33	0.33	0.14	0.51	0.30	0.30
Uniform Delay d ₁		17.9	18.0	28.9	11.9	21.3	23.7
Delay Factor k		0.50	0.50	0.11	0.11	0.11	0.29
Incremental Delay d ₂		0.4	0.3	0.3	0.2	0.2	5.9
PF Factor		1.000	1.000	1.000	1.000	1.000	1.000
Control Delay		18.3	18.3	29.2	12.1	21.4	29.6
Lane Group LOS		В	В	С	В	С	С
Approach Delay		1	8.3	1	4.0	24.3	
Approach LOS			В		В	С	
Intersection Delay	19.0	В	В				

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 11:45 A

No Build Condition

,

General Information

Volume Adjustment												
		EB			WB			NB			SB	<u>Anna Angar</u> ong I
	LT	ТН	RT	LT	ТН	RT	LT	TH	RT	LT	ТН	RT
Volume	13	939	40	225	1372	177	82	350	215	178	601	72
PHF	0.91	0.91	0.91	0.87	0.87	0.87	0.75	0.75	0.75	0.91	0.91	0.91
Adjusted Flow Rate	14	1032	44	259	1577	200	109	467	281	196	660	79
Lane Group	L	Т	R	L	Т	R	L	Т	R	L	TR	
Adjusted Flow Rate	14	1032	44	259	1577	200	109	467	281	196	739	
Proportion of LT or RT	1.000	-	1.000	1.000		1.000	1.000		1.000	1.000		0.107
Saturation Flow Rate												
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0
f _w	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000	
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fp	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	<u> </u>
f _{bb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	
f _{LT}	0.099	1.000		0.950	1.000	-	0.950	1.000	_	0.950	1.000	
Secondary f _{LT}				0.121	0.121		0.129	0.129		0.303	0.303	-
f _{RT}	-	1.000	0.850		1.000	0.850		1.000	0.850	-	0.984	
f _{Lpb}	1.000	1.000	_	1.000	1.000		1.000	1.000		1.000	1.000	
f _{Rpb}		1.000	1.000		1.000	1.000		1.000	1.000		1.000	
Adjusted Satflow	184	3428	1478	1711	3428	1478	1652	3547	1478	1652	3490	
Secondary Adjusted Satflow			-	218	415		225	459	_	527	1058	

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis												
		EB			WB			NB			SB	
Lane Group	L	Т	R	L	Т	R	L	Т	R	L	TR	
Adjusted Flow Rate	14	1032	44	259	1577	200	109	467	281	196	739	
Satflow Rate	184	3428	1478	1711	3428	1478	1652	3547	1478	1652	3490	
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Green Ratio	0.41	0.41	0.41	0.58	0.57	0.41	0.35	0.27	0.27	0.35	0.27	
Lane Group Capacity	75	1401	604	317	1961	604	136	945	394	229	930	
v/c Ratio	0.19	0.74	0.07	0.82	0.80	0.33	0.80	0.49	0.71	0.86	0.79	
Flow Ratio	0.08	0.30	0.03	0.13	0.46	0.14	0.04	0.13	0.19	0.04	0.21	
Critical Lane Group	N	N	N	N	Y	N	Y	N	N	N	N	
Sum Flow Ratios			1			0.75	•	-		<u> </u>		
Lost Time/Cycle	12.00											, .
Critical v/c Ratio								·				
Lane Group Capacity,	Contro	l Dela	y, and	LOS	Determ	inatior						
	1	EB		1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	WB			NB			SB	
Lane Group	L	T	R	L	Т	R	L	T	R	L	TR	
Adjusted Flow Rate	14	1032	44	259	1577	200	109	467	281	196	739	
Lane Group Capacity	75	1401	604	317	1961	604	136	945	394	229	930	
v/c Ratio	0.19	0.74	0.07	0.82	0.80	0.33	0.80	0.49	0.71	0.86	0.79	
Green Ratio	0.41	0.41	0.41	0.58	0.57	0.41	0.35	0.27	0.27	0.35	0.27	<u>. </u>
Uniform Delay d ₁	26.5	35.0	25.2	28.7	23.7	28.3	48.2	43.4	46.5	49.0	47.8	
Delay Factor k	0.50	0.50	0.50	0.36	0.35	0.11	0.35	0.11	0.28	0.39	0.34	
Incremental Delay d ₂	5.4	3.5	0.2	15.3	2.5	0.3	28.1	0.4	6.0	25.9	4.8	
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Control Delay	31.9	38.5	25.5	43.9	26.3	28.6	76.3	43.8	52.5	74.9	52.6	
Lane Group LOS	С	D	С	D	С	С	E	D	D	E	D	
Approach Delay	37	7.9		28.8			5	0.8		57.3		
Approach LOS	1	כ		С			D			E		
Intersection Delay	4(0.0				Interse	ction LO	S		D		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+[™] Version 5.21

Generated: 12/4/2007 11:50 A:

General Information

Volume Adjustment												
		EB			WB			NB			SB	
	LT	TH	RT	LT	ТН	RT	LT	TH	RT	LT	TH	RT
Volume	77	1337	46	367	1144	292	121	598	254	223	386	36
PHF	0.90	0.90	0.90	0.92	0.92	0.92	0.90	0.90	0.90	0.88	0.88	0.88
Adjusted Flow Rate	86	1486	39	399	1243	292	134	664	144	253	439	41
Lane Group	L	Т	R	L	Т	R	L	Т	R	L	TR	
Adjusted Flow Rate	86	1486	39	399	1243	292	134	664	144	253	480	
Proportion of LT or RT	1.000		1.000	1.000		1.000	1.000		1.000	1.000	_	0.085
Saturation Flow Rate												
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0
f _w	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000	
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0:980	0.980	0.980	0.980	0.980	
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _p	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{ъb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	
f _{LT}	0.950	1.000		0.950	1.000	-	0.950	1.000		0.950	1.000	-
Secondary f _{LT}	0.150	0.150		0.060	0.060	-	0.457	0.457	-	0.114	0.114	
f _{RT}	-	1.000	0.850		1.000	0.850		1.000	0.850		0.987	
f _{Lpb}	1.000	1.000		1.000	1.000	-	1.000	1.000		1.000	1.000	
f _{Rpb}		1.000	1.000	_	1.000	1.000	_	1.000	1.000	_	1.000	
Adjusted Satflow	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3501	• •
Secondary Adjusted Satflow	280	515		108	206	_	795	1622		199	400	

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis												
		EB			WB			NB			SB	<u>- 1989 (1996)</u> 2012 (1997) -
Lane Group	L	T	R	L	T	R	L	Т	R	L	TR	1
Adjusted Flow Rate	86	1486	39	399	1243	292	134	664	144	253	480	<u> </u>
Satflow Rate	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3501	
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Green Ratio	0.45	0.40	0.40	0.61	0.51	0.51	0.23	0.19	0.19	0.35	0.26	<u> </u>
Lane Group Capacity	194	1385	597	329	1744	752	210	686	286	244	927	
v/c Ratio	0.44	1.07	0.07	1.21	0.71	0.39	0.64	0.97	0.50	1.04	0.52	
Flow Ratio	0.05	0.43	0.03	0.16	0.36	0.20	0.03	0.19	0.10	0.12	0.14	
Critical Lane Group	N	N	N	Y	N	N	N	N	N	Y	N	
Sum Flow Ratios						1.66	5					1
Lost Time/Cycle						12.0	u.			<u> </u>		
Critical v/c Ratio						1.81				<u> </u>		
Lane Group Capacity	, Contro	ol Dela	y, and	LOS	Determ	inatior						
		EB			WB			NB			SB	
Lane Group	L	T	R	L	T	R	L	T	R	L	TR	
Adjusted Flow Rate	86	1486	39	399	1243	292	134	664	144	253	480	
Lane Group Capacity	194	1385	597	329	1744	752	210	686	286	244	927	· · ·
v/c Ratio	0.44	1.07	0.07	1.21	0.71	0.39	0.64	0.97	0.50	1.04	0.52	
Green Ratio	0.45	0.40	0.40	0.61	0.51	0.51	0.23	0.19	0.19	0.35	0.26	
Uniform Delay d ₁	25.6	44.7	27.4	52.1	28.4	22.6	53.6	60.0	54.1	45.4	47.0	
Delay Factor k	0.11	0.50	0.50	0.50	0.28	0.11	0.22	0.47	0.11	0.50	0.12	
Incremental Delay d ₂	1.6	46.4	0.2	120.5	1.4	0.3	6.3	26.5	1.4	67.6	0.5	-
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Control Delay	27.2	91.1	27.6	172.6	29.8	22.9	60.0	86.6	55.5	113.0	47.5	
Lane Group LOS	С	F	С	F	С	С	E	F	E	F	D	
Approach Delay	86	5.1		58.2			7	8.0	-	70.1		
Approach LOS		-		E				E		E		
Intersection Delay	72	72.1				Interse	ction LO	S		E		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generaled: 12/4/2007 11:51 A

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

الالدينية والإرتيس وا

المحمد والمحمد فكالأشر سيسجد والشوام

H RT 54 3 0.88 61
H RT 54 3 0.88 61
54 3 0.88 3 61
B 0.88 3 61
8 61
l
- 0.147
0
0
20
30
20
0
0
20
52
- 0
- 0
'8
- 0
0
8

.....

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis													
		EB			WB			NB			SB		
Lane Group	L	Т	R	L	Т	R	L	Τ	R	L	TR		
Adjusted Flow Rate	107	803	67	310	981	256	98	513	185	191	414		
Satflow Rate	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3468		
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Green Ratio	0.34	0.28	0.28	0.56	0.43	0.43	0.23	0.19	0.19	0.39	0.28		
Lane Group Capacity	249	960	414	458	1460	629	240	680	283	329	983		
v/c Ratio	0.43	0.84	0.16	0.68	0.67	0.41	0.41	0.75	0.65	0.58	0.42		
Flow Ratio	0.06	0.23	0.05	0.18	0.29	0.17	0.04	0.14	0.13	0.12	0.12		
Critical Lane Group	N	Y	N	Y	N	N	N	Y	N	Y	N		
Sum Flow Ratios		1	-1			0.68			1			<u> </u>	
Lost Time/Cycle						24.00							
Critical v/c Ratio						0.84							
Lane Group Capacity, C	Contro	l Dela	y, and	LOS	Determ	ination							
		EB			WB			NB	And the second s		SB	120100011	
Lane Group	L	T	R	L	Т	R	L	Т	R	L	TR		
Adjusted Flow Rate	107	803	67	310	981	256	98	513	185	191	414		
Lane Group Capacity	249	960	414	458	1460	629	240	680	283	329	983	- .	
v/c Ratio	0.43	0.84	0.16	0.68	0.67	0.41	0.41	0.75	0.65	0.58	0.42		
Green Ratio	0.34	0.28	0.28	0.56	0.43	0.43	0.23	0.19	0.19	0.39	0.28	 .	
Uniform Delay d ₁	27.5	40.6	32.6	26.5	27.7	23.9	38.7	45.8	44.8	26.6	35.0		
Delay Factor k	0.11	0.50	0.50	0.25	0.24	0.11	0.11	0.31	0.23	0.17	0.11		
Incremental Delay d ₂	1.2	8.6	0.8	4.0	1.2	0.4	1.1	4.8	5.3	2.6	0.3		
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	<u> </u>	
Control Delay	28.7	49.2	33.4	30.5	28.9	24.4	39.9	50.6	50.2	29.2	35.3		
Lane Group LOS	С	D	С	С	С	С	D	D	D	С	D		
Approach Delay	45	.9		28.5			49	9.2	1	33.4			
Approach LOS	Ľ)		(2		D			С			
Intersection Delay	37	.8				Intersec	tion LOS	3		D			

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 11:51 A

			FU	LL REF	PORT							
General Information				Si	te Info	rmation						
Analyst MCM Agency or Co. NELSON & POPE				Int Ar	tersect ea Tvp	ion be	OLD SSR All oi	NICHOLS ther areas	RD @ .	LIE		
Date Performed 11/20/2007	99			Ju	risdicti	on						
				Ar	nalysis	Year	2009)	CAN ADATA BA			
Intersection Geometry	2 2		i a constant		910-14-50-097 	. <u>2010/168</u> 70.01.179		ang				<u>1994 - 1997 - 199</u>
Grade = 0			Gr	ade =	Sho 1 1 1 1 1 1 1 1 1 1 1 1 1) w					
Grade = 0	2	1	G	rade = 0	** ~ *\$	= L` * = L * = L	T R TR					
	L	EB			WB	1 07		NB			SB	
Volumo (upb)	240	52	32					355	318	195	669	
	2	2	2					2	2	2	2	
	2	0.01	- 0.01					 	0.98	0.80	0.80	
	0.91	0.91	0.91				<u> </u>	Δ	Δ	Δ	Δ	
					<u> </u>			20	20	20	20	
Startup Lost Time	2.0	2.0						2.0	2.0	2.0	2.0	
Extension of Effective Green	2.0	2.0						2.0	2.0	2.0	2.0	
Arrival Type	3	3					<u> </u>		3	3	3	
	3.0	3.0						3.0	3.0	3.0	3.0	
Ped/Bike/RTOR Volume	0	0	21					0	201	0	0	
Lane Width	12.0	12.0						11.0	10.0	12.0	12.0	<u> </u>
Parking (Y or N)	N		<u>N</u>		-		<u> N</u>		N	N		N
Parking/Hour	ļ	-	<u> </u>		<u> </u>		<u> </u>					
Bus Stops/Hour	0	0					<u> </u>	0	0	0	0	<u> </u>
Pedestrian Timing		3.2					<u> </u>	3.2			3.2	
EB Only C	2	03		04		Thru & R	Т	SB Only		07	()8
Timing $G = 24.0$ $G =$		G =		G =	(G = 48.5	5	G = 10.5	G =		G =	
Y = 6 Y = 6		Y =		Y =	I`	r = 5.5		Y = 5.5	Y =		Y =	

General Information

Volume Adjustment												
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	ТН	RT	LT	ТН	RT
Volume	340	52	32					355	318	195	669	
PHF	0.91	0.91	0.91					0.98	0.98	0.89	0.89	
Adjusted Flow Rate	374	57	12					362	119	219	752	
Lane Group	L	TR						τ	R	L	τ	
Adjusted Flow Rate	374	69						362	119	219	752	
Proportion of LT or RT	1.000		0.174						1.000	1.000		0.000
Saturation Flow Rate												
Base Satflow	1900	1900	E					1900	1900	1900	1900	
Number of Lanes	2	2	0					2	1	2	2	
fw	1.000	1.000						0.967	0.933	1.000	1.000	
f _{HV}	0.980	0.980						0.980	0.980	0.980	0.980	
fg	1.000	1.000						1.000	1.000	1.000	1.000	
f _p	1.000	1.000						1.000	1.000	1.000	1.000	
f _{bb}	1.000	1.000						1.000	1.000	1.000	1.000	
f _a	1.000	1.000						1.000	1.000	1.000	1.000	
f _{LU}	0.971	0.952						0.952	1.000	0.971	0.952	
f _{LT}	0.950	1.000	_			_		1.000	-	0.950	1.000	_
Secondary f _{LT}			-			-						
f _{RT}		0.974		-				1.000	0.850		1.000	
f _{Lpb}	1.000	1.000						1.000		1.000	1.000	
f _{Rpb}		1.000					-	1.000	1.000		1.000	
Adjusted Satflow	3437	3454						3428	1478	3437	3547	
Secondary Adjusted Satflow			_			-						

......

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis												
		EB	t na tribuit (n tana and a t		WB	1117 Late Section 201		NB	A we are a set of the		SB	
Lane Group	L	TR						Т	R	L	T	1
Adjusted Flow Rate	374	69						362	119	219	752	
Satflow Rate	3437	3454		-				3428	1478	3437	3547	
Lost Time	2.0	2.0						2.0	2.0	2.0	2.0	<u> </u>
Green Ratio	0.24	0.24						0.49	0.49	0.10	0.64	1
Lane Group Capacity	825	829						1663	717	361	2288	-
v/c Ratio	0.45	0.08						0.22	0.17	0.61	0.33	
Flow Ratio	0.11	0.02						0.11	0.08	0.06	0.21	
Critical Lane Group	Y	N						N	N	N	Y	
Sum Flow Ratios		<u> </u>				0.32	2		. . .			L
Lost Time/Cycle						11.5	50					·
Critical v/c Ratio						0.30	6					
Lane Group Capacity	, Control	Delay,	and	los d	eterm	ination						
		EB			WB			NB			SB	
Lane Group	L	TR						Т	R	L	T	
Adjusted Flow Rate	374	69						362	119	219	752	[
Lane Group Capacity	825	829						1663	717	361	2288	
v/c Ratio	0.45	0.08						0.22	0.17	0.61	0.33	
Green Ratio	0.24	0.24						0.49	0.49	0.10	0.64	
Uniform Delay d ₁	32.4	29.5						14.8	14.4	42.8	8.0	
Delay Factor k	0.50	0.50						0.11	0.11	0.19	0.11	
Incremental Delay d ₂	1.8	0.2						0.1	0.1	2.9	0.1	
PF Factor	1.000	1.000				,		1.000	1.000	1.000	1.000	e
Control Delay	34.2	29.7						14.9	14.5	45.7	8.1	
Lane Group LOS	С	С						В	В	D	A	
Approach Delay	33	3.5					14	4.8	- J	1	16.6	
Approach LOS	(2						B			В	
Intersection Delay	20).1				Intersec	tion LO	S			C	

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 11:53 Add

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Volume Adjustment EΒ WB NB SB LT ΤH RT LT TH RT LT ΤH RT LT TH RT 1463 Volume 622 108 684 307 354 623 PHF 0.97 0.97 0.97 0.81 0.81 0.75 0.75 1508 Adjusted Flow Rate 641 88 844 310 472 831 L TR Lane Group Т R L Τ 1596 641 Adjusted Flow Rate 844 310 472 831 Proportion of LT or RT 1.000 0.055 1.000 1.000 ---0.000 **Saturation Flow Rate** 1900 1900 1900 1900 1900 1900 **Base Satflow** Number of Lanes 2 2 0 2 1 2 2 1.000 1.000 0.967 0.933 1.000 1.000 fw 0.980 0.980 0.980 0.980 0.980 0.980 f_{HV} 1.000 1.000 1.000 1.000 1.000 1.000 fg 1.000 1.000 1.000 1.000 1.000 1.000 fp 1.000 1.000 1.000 1.000 1.000 1.000 f_{bb} 1.000 1.000 1.000 1.000 1.000 1.000 f_a 0.971 0.952 0.952 1.000 0.971 0.952 f_{LU} 0.950 1.000 1.000 0.950 1.000 f_{LT} ____ Secondary f_{1 T} ---------_ 0.992 1.000 0.850 1.000 f_{RT} _ 1.000 1.000 1.000 1.000 1.000 f_{Lpb} --------1.000 1.000 1.000 1.000 ___ f_{Rpb} 3517 3437 3428 1478 3437 3547 Adjusted Satflow Secondary Adjusted Satflow -------------

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis											
		EB		WB		NB	and the logic sharps design of the s		SB		
Lane Group	L	TR				τ	R	L	Т		
Adjusted Flow Rate	641	1596				844	310	472	831		
Satflow Rate	3437	3517				3428	1478	3437	3547		
Lost Time	2.0	2.0				2.0	2.0	2.0	2.0		
Green Ratio	0.43	0.43				0.26	0.26	0.14	0.45		
Lane Group Capacity	1488	1523				881	380	481	1603		
v/c Ratio	0.43	1.05			· · · · · · · · · · · · · · · · · · ·	0.96	0.82	0.98	0.52	<u> </u>	
Flow Ratio	0.19	0.45				0.25	0.21	0.14	0.23		
Critical Lane Group	N	Υ				Y	N	Y	N		
Sum Flow Ratios			ſ <u></u>		0.84		1				
Lost Time/Cycle					17.00						
Critical v/c Ratio					1.01						
Lane Group Capacity, C	ontrol	Delay, and	LOS D	etermina	tion						
an series and an 		EB		WB		NB			SB		
Lane Group	L	TR				Τ	R	L	T	·	
Adjusted Flow Rate	641	1596				844	310	472	831		
Lane Group Capacity	1488	1523				881	380	481	1603	<u></u> .	
v/c Ratio	0.43	1.05				0.96	0.82	0.98	0.52		
Green Ratio	0.43	0.43			· · · · · · · · · · · · · · · · · · ·	0.26	0.26	0.14	0.45	<u>,</u>	
Uniform Delay d ₁	19.8	28.4				36.6	34.9	42.9	19.6		
Delay Factor k	0.50	0.50				0.47	0.36	0.49	0.12		
Incremental Delay d ₂	0.9	36.7				20.8	12.9	36.1	0.3		
PF Factor	1.000	1.000				1.000	1.000	1.000	1.000		
Control Delay	20.7	65.1				57.4	47.9	78.9	19.9		
Lane Group LOS	С	E				E	D	E	В		
Approach Delay	52	.4	r.			54.8			41.3		
Approach LOS	L)				D			D		
Intersection Delay	49	.9		Int	ersection LC	DS		 D			

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/4/2007 11:54 A

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Volume Adjustment												
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Volume	493	129	59					474	226	285	534	
PHF	0.91	0.91	0.91					0.93	0.93	0.94	0.94	
Adjusted Flow Rate	542	142	42					510	27	303	568	-
Lane Group	L	TR					· · · · · · · · · · · · · · · · · · ·	τ	R	L	T	
Adjusted Flow Rate	542	184						510	27	303	568	
Proportion of LT or RT	1.000	_	0.228			-			1.000	1.000		0.000
Saturation Flow Rate												
Base Satflow	1900	1900		:				1900	1900	1900	1900	
Number of Lanes	2	2	0					2	1	2	2	
f _w	1.000	1.000						0.967	0.933	1.000	1.000	
f _{HV}	0.980	0.980						0.980	0.980	0.980	0.980	
fg	1.000	1.000			-			1.000	1.000	1.000	1.000	
fp	1.000	1.000						1.000	1.000	1.000	1.000	
f _{bb}	1.000	1.000						1.000	1.000	1.000	1.000	
f _a	1.000	1.000						1.000	1.000	1.000	1.000	-
f _{LU}	0.971	0.952						0.952	1.000	0.971	0.952	
f _{LT}	0.950	1.000						1.000		0.950	1.000	
Secondary f _{LT}												
f _{RT}		0.966						1.000	0.850	-	1.000	
f _{Lpb}	1.000	1.000						1.000		1.000	1.000	
f _{Rpb}		1.000		-				1.000	1.000		1.000	
Adjusted Satflow	3437	3425			-			3428	1478	3437	3547	
Secondary Adjusted Satflow												
۰<u>۲</u>۰۰۰ - ۲۰

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis									
		EB	WB		NB			SB	i de secte general de la companya d
Lane Group	L	TR			T	R	L	T	
Adjusted Flow Rate	542	184			510	27	303	568	
Satflow Rate	3437	3425			3428	1478	3437	3547	
Lost Time	2.0	2.0			2.0	2.0	2.0	2.0	
Green Ratio	0.33	0.33			0.30	0.30	0.14	0.51	
Lane Group Capacity	1146	1142			1028	443	481	1821	
v/c Ratio	0.47	0.16			0.50	0.06	0.63	0.31	
Flow Ratio	0.16	0.05			0.15	0.02	0.09	0.16	
Critical Lane Group	Y	N			Y	N	Y	N	
Sum Flow Ratios		1		0.39					I
Lost Time/Cycle				17.00	2				
Critical v/c Ratio				0.51				<u> </u>	
Lane Group Capacity, C	ontro	l Delay, and	LOS Determ	ination					
		EB	WB		NB			SB	
Lane Group	L	TR			Т	R	L	T	
Adjusted Flow Rate	542	184			510	27	303	568	
Lane Group Capacity	1146	1142			1028	443	481	1821	······································
v/c Ratio	0.47	0.16			0.50	0.06	0.63	0.31	
Green Ratio	0.33	0.33			0.30	0.30	0.14	0.51	<u></u>
Uniform Delay d ₁	19.8	17.6			21.6	18.7	30.4	10.6	
Delay Factor k	0.50	0.50			0.11	0.11	0.21	0.11	
Incremental Delay d ₂	1.4	0.3			0.4	0.1	2.7	0.1	
PF Factor	1.000	1.000			1.000	1.000	1.000	1.000	
Control Delay	21.2	17.9			22.0	18.8	33.1	10.7	·····
Lane Group LOS	С	В			С	В	С	В	
Approach Delay	20).4			21.8	1		18.5	
Approach LOS	0	;			С			В	
Intersection Delay	19).9		Intersect	ionLOS		В		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 11:54 A

. A series in the second second second

General Information

Volume Adjustment	1 1											
		EB			WB			NB			SB	
	LT	ТН	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Volume				332	1621	97	237	459			531	485
PHF				0.96	0.96	0.96	0.98	0.98			0.94	0.94
Adjusted Flow Rate				346	1689	97	242	468			565	516
Lane Group				L	TR		L	Т			Т	R
Adjusted Flow Rate				346	1786		242	468			565	516
Proportion of LT or RT				1.000		0.054	1.000		0.000			1.000
Saturation Flow Rate												
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes				2	3	0	2	2			3	1
f _w				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
fg				1.000	1.000		1.000	1.000			1.000	1.000
fp				1.000	1.000		1.000	1.000			1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000
fa				1.000	1.000		1.000	1.000			1.000	1.000
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}				0.950	1.000	-	0.950	1.000	-		1.000	
Secondary f _{LT}			-									
f _{RT}					0.992		_	1.000		-	1.000	0.850
f _{Lpb}			_	1.000	1.000		1.000	1.000			1.000	_
f _{Rpb}	-			-	1.000			1.000		-	1.000	1.000
Adjusted Satflow				3437	5033		3437	3547			5074	1583
Secondary Adjusted Satflow												

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis							
	EB		WB		NB	SE	<u>ana an</u> ann an I
Lane Group			TR	L	T	T	R
Adjusted Flow Rate		346	1786	242	468	565	516
Satflow Rate		3437	5033	3437	3547	5074	1583
Lost Time		2.0	2.0	2.0	2.0	2.0	2.0
Green Ratio		0.40	0.40	0.10	0.48	0.32	0.32
Lane Group Capacity		1375	2013	351	1710	1634	510
v/c Ratio		0.25	0.89	0.69	0.27	0.35	1.01
Flow Ratio		0.10	0.35	0.07	0.13	0.11	0.33
Critical Lane Group		N	Y	Y	N	N	V V
Sum Flow Ratios		I		0.75			
Lost Time/Cycle				17.60	, , , , , , , , , , , , , , , , , , , 		
Critical v/c Ratio				0.91		<u></u>	
Lane Group Capacity, C	ontrol Delay, and	d LOS	Determina	ition			
	EB		WB	-s right date investigation shares	NB	SB	
Lane Group		L	TR	L	T		R
Adjusted Flow Rate		346	1786	242	468	565	516
Lane Group Capacity		1375	2013	351	1710	1634	510
v/c Ratio		0.25	0.89	0.69	0.27	0.35	1.01
Green Ratio		0.40	0.40	0.10	0.48	0.32	0.32
Uniform Delay d ₁		20.0	27.9	43.4	15.5	25.9	33.9
Delay Factor k		0.50	0.50	0.26	0.11	0.11	0.50
Incremental Delay d ₂		0.4	6.3	5.6	0.1	0.1	42.8
PF Factor		1.000	1.000	1.000	1.000	1.000	1.000
Control Delay		20.5	34.2	49.0	15.5	26.0	76 7
Lane Group LOS		С	С	D	В		E
Approach Delay	<u> </u>	3	1.9	2	7.0	50 2	
Approach LOS			С		С	D	
Intersection Delay	36.1	Intersect			S		<u></u>

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/4/2007 11:52 A:

General Information

Volume Adjustment	T T											
		EB			WB			NB			SB	in part for the bridge of a share of the
	LT	тн	RT	LT	TH	RT	LT	ТН	RT	LT	ТН	RT
Volume				290	211	198	337	969			687	217
PHF				0.90	0.90	0.90	0.91	0.91			0.87	0.87
Adjusted Flow Rate				322	234	168	370	1065			790	249
Lane Group				L	TR		L	Т			Τ	R
Adjusted Flow Rate				322	402		370	1065			790	249
Proportion of LT or RT				1.000	_	0.418	1.000		0.000			1.000
Saturation Flow Rate												
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes			3	2	3	0	2	2			3	1
f _w				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
fg				1.000	1.000		1.000	1.000			1.000	1.000
fp				1.000	1.000		1.000	1.000			1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000
fa				1.000	1.000		1.000	1.000			1.000	1.000
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}			_	0.950	1.000		0.950	1.000			1.000	_
Secondary f _{LT}						_						
f _{RT}	-			_	0.937			1.000		-	1.000	0.850
f _{Lpb}				1.000	1.000		1.000	1.000	_		1.000	
f _{Rpb}				_	1.000			1.000		-	1.000	1.000
Adjusted Satflow				3437	4756		3437	3547			5074	1583
Secondary Adjusted Satflow												_

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis						an a	
	EB		WB		NB	SB	<u>ides de provisiones pr</u>
Lane Group		L	TR	L	Τ	T	R
Adjusted Flow Rate		322	402	370	1065	790	249
Satflow Rate		3437	4756	3437	3547	5074	1583
Lost Time		2.0	2.0	2.0	2.0	2.0	2.0
Green Ratio		0.30	0.30	0.23	0.58	0.29	0.29
Lane Group Capacity		1031	1427	804	2064	1471	459
v/c Ratio		0.31	0.28	0.46	0.52	0.54	0.54
Flow Ratio		0.09	0.08	0.11	0.30	0.16	0.04
Critical Lane Group		Y	N	N	Y	N	N
Sum Flow Ratios				0.39			
Lost Time/Cycle	,		- , <u>, e</u> unum - , <u>, e</u>	11.80			
Critical v/c Ratio				0.45			
Lane Group Capacity,	Control Delay, and	LOS	Determina	ation			
	EB		WB	in a second distance of the second second	NB	SB	
Lane Group		L	TR	L	T	7	R
Adjusted Flow Rate		322	402	370	1065	790	249
Lane Group Capacity		1031	1427	804	2064	1471	459
v/c Ratio		0.31	0.28	0.46	0.52	0.54	0.54
Green Ratio		0.30	0.30	0.23	0.58	0.29	0.29
Uniform Delay d ₁		27.0	26.8	32.9	12.5	29.9	29.9
Delay Factor k		0.50	0.50	0.11	0.12	0.14	0.14
Incremental Delay d ₂		0.8	0.5	0.4	0.2	0.4	13
PF Factor		1.000	1.000	1.000	1.000	1 000	1 000
Control Delay		27.8	27.3	33.3	12.7	30.2	31.2
Lane Group LOS		С	С	С	В	C	C
Approach Delay		27	7.5	18	3.0	30.5	
Approach LOS		1 0	С		3	<u> </u>	
Intersection Delay	24.2	Intersection		ersection LOS	6	<u>c</u>	<u></u>

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/4/2007 11:52 A

6

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Volume Adjustment

		EB			WB			NB	n in i fans i fansige		SB	
	LT	TH	RT	LT	TH	RT	LT	ТН	RT		ТН	RT
Volume				213	178	183	110	856			606	330
PHF				0.87	0.87	0.87	0.98	0.98			0.93	0.93
Adjusted Flow Rate				245	205	147	112	873			652	353
Lane Group				L	TR		L	Т			T	R
Adjusted Flow Rate				245	352		112	873			652	353
Proportion of LT or RT				1.000		0.418	1.000		0.000			1.000
Saturation Flow Rate												
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes				2	3	0	2	2			3	1
f _w				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
fg				1.000	1.000		1.000	1.000	_		1.000	1.000
f _p				1.000	1.000		1.000	1.000			1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000
f _a				1.000	1.000		1.000	1.000			1.000	1.000
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}			_	0.950	1.000		0.950	1.000			1.000	
Secondary f _{LT}									_			
f _{RT}					0.937			1.000			1.000	0.850
f _{Lpb}				1.000	1.000		1.000	1.000			1.000	
f _{Rpb}	-			<u></u>	1.000		_	1.000		<u> </u>	1.000	1.000
Adjusted Satflow				3437	4756		3437	3547			5074	1583
Secondary Adjusted Satflow			- [i		

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis										
	EB		WB			NB		SB		
Lane Group		L	TR		L	T		Т	R	
Adjusted Flow Rate		245	352		112	873		652	353	
Satflow Rate		3437	4756		3437	3547		5074	1583	
Lost Time		2.0	2.0		2.0	2.0		2.0	2.0	
Green Ratio		0.33	0.33		0.14	0.51		0.30	0.30	
Lane Group Capacity		1146	1585		467	1807		1502	469	
v/c Ratio		0.21	0.22		0.24	0.48		0.43	0.75	
Flow Ratio		0.07	0.07	(0.03	0.25		0.13	0.22	
Critical Lane Group		N	Y		Y	N		N	Y	
Sum Flow Ratios				0.33	}	J				
Lost Time/Cycle				17.60	0					
Critical v/c Ratio				}						
Lane Group Capacity, C	ontrol Delay, and	LOS	Determin	ation						
	EB		WB			NB		SB		
Lane Group		L	TR		L	T		Т	R	
Adjusted Flow Rate		245	352		112	873		652	353	
Lane Group Capacity		1146	1585		467	1807	· · · · · · · · · · · · · · · · · · ·	1502	469	
v/c Ratio		0.21	0.22	(0.24	0.48		0.43	0.75	
Green Ratio		0.33	0.33	(0.14	0.51		0.30	0.30	
Uniform Delay d ₁		17.9	18.0		28.9	12.0		21.3	23.9	
Delay Factor k		0.50	0.50	(0.11	0.11		0.11	0.31	
Incremental Delay d ₂		0.4	0.3		0.3	0.2		0.2	6.8	
PF Factor		1.000	1.000		1.000	1.000		1.000	1.000	
Control Delay		18.4	18.3		29.2	12.2		21.5	30.7	
Lane Group LOS		В	В		С	В		С	С	
Approach Delay		1	8.3		14.1			24.7		
Approach LOS		В			В			С		
Intersection Delay	19.2	Intersect			ion LOS	5		В		

Copyright © 2005 University of Florida, All Rights Reserved

Build Condition

	FULL REPORT														
General Info	rmation						Site	Infor	matio	n	<u>Response</u>	<u> <u>a</u></u>			
Analyst Agency or Co Date Perform Time Period	MCM p. NELSON ned 11/20/200 BUILD AN	& POPE 7 1 2009					Inters Area Juriso Analy	sectio Type dictio /sis \	on e on Year	NYS 4 All othe 2009	54 @ NI er areas	CHOLS	S RD		
Intersection	Geometry								CREWER CREWER						
Grade = 0		0	2 1					_	~~~						
					C	Grade = ()	Show	North Arro)					
1							- -		= T = R = L = T	R					
Grade = 0		irade = (म्ब म्ब ्रा	\ \ \	= L - - L	T R									
	K	1	2	1	Ļ	1000 - 0		Ϋ́	= L	TR					
Volume and	Timing Input														
		ţ	<u>іт</u>	<u>ЕВ</u> 1 тн			W IT T	/B 	PT				1	SB	
Volume (vph)		13	939	40	225	137	72	179	82	351	215	192	H	
% Heavy Vel	, h		2	2	2	2	2		2	2	2	210	105		/3
PHF			0.91	0.91	0.91	0.87	0.8	7 1	0.87	0.75	2 0 75	0.75	2	2	2
Actuated (P/	A)		P	P	P	A	A	· ·	A	A	A	Δ	Δ	0.91	0.97
Startup Lost	Time		2.0	2.0	2.0	2.0	2.0	,	2.0	2.0	2.0	2.0	20	20	
Extension of	Effective Gree	en	2.0	2.0	2.0	2.0	2.0	,	2.0	2.0	2.0	2.0	2.0	2.0	
Arrival Type	<u></u>		3	3	3	3	3		3	3	3	3	3	3	
Unit Extensio	on		3.0	3.0	3.0	3.0	3.0	0	3.0	3.0	3.0	3.0	3.0	3.0	
Ped/Bike/RT	OR Volume		0	0	0	0	0		3	0	0	4	0	0	0
Lane Width			12.0	11.0	10.0	11.0	11.0	0 1	10.0	10.0	12.0	10.0	10.0	12.0	
Parking (Y o	r N)		N		N	N			N	N		N	N		N
Parking/Hou	r														<u> </u>
Bus Stops/H	Hour 0 0 0 0					0	0		0	0	0	0	0	0	<u> </u>
Pedestrian T	iming			3.2			3.2	2			3.2	I	1	3.2	<u> </u>
	WB Only	EW P	'erm	03		04		Ex	cl. Left	NS	8 Perm		07	0	8
Timing	G = 17.9	G = 5	7.2	G = G =				G =	5.6	G =	37.3	G =		G =	
Duration of A	Y = 5 \nalysis (hrs) =	Y = 6 = 0.25		Y =	Y =	Y = 5		$Y = 6 \qquad Y = \qquad Y = $							
<u></u>	, (t					Cycle Length C =			= 140.0			

General Information

Volume Adjustment					9.4927.5							
		EB			WB			NB			SB	the second s
	LT	ТН	RT	LT	ТН	RT	LT	TH	RT	LT	TH	RT
Volume	13	939	40	225	1372	179	82	351	215	183	605	73
PHF	0.91	0.91	0.91	0.87	0.87	0.87	0.75	0.75	0.75	0.91	0.91	0.91
Adjusted Flow Rate	14	1032	44	259	1577	202	109	468	281	201	665	80
Lane Group	L	Т	R	L	Т	R	L	Т	R	L	TR	
Adjusted Flow Rate	14	1032	44	259	1577	202	109	468	281	201	745	
Proportion of LT or RT	1.000		1.000	1.000		1.000	1.000	_	1.000	1.000		0.107
Saturation Flow Rate												
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0
fw	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000	
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
fp	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{bb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	• <u> </u>
fa	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	
f _{LT}	0.099	1.000		0.950	1.000	_	0.950	1.000		0.950	1.000	
Secondary f _{LT}			-	0.121	0.121		0.126	0.126	_	0.302	0.302	
f _{RT}	_	1.000	0.850		1.000	0.850	_	1.000	0.850		0.984	
f _{Lpb}	1.000	1.000		1.000	1.000	_	1.000	1.000		1.000	1.000	
f _{Rpb}		1.000	1.000	_	1.000	1.000	_	1.000	1.000		1.000	
Adjusted Satflow	184	3428	1478	1711	3428	1478	1652	3547	1478	1652	3490	
Secondary Adjusted Satflow				218	415		219	447		526	1055	_

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis												
	ļ	EB			WB			NB			SB	
Lane Group	L	Т	R	L	Т	R	L	Т	R		TR	
Adjusted Flow Rate	14	1032	44	259	1577	202	109	468	281	201	745	
Satflow Rate	184	3428	1478	1711	3428	1478	1652	3547	1478	1652	3490	
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Green Ratio	0.41	0.41	0.41	0.58	0.57	0.41	0.35	0.27	0.27	0.35	0.27	
Lane Group Capacity	75	1401	604	317	1961	604	134	945	394	229	930	
v/c Ratio	0.19	0.74	0.07	0.82	0.80	0.33	0.81	0.50	0.71	0.88	0.80	·
Flow Ratio	0.08	0.30	0.03	0.13	0.46	0.14	0.04	0.13	0.19	0.04	0.21	
Critical Lane Group	N	N	N	N	Y	Ν	N	N	N	Y	N	
Sum Flow Ratios						0.76						
Lost Time/Cycle						12.00	0					<u> </u>
Critical v/c Ratio						0.83	1				- <u></u>	
Lane Group Capacity, 0	Contro	l Dela	y, and	LOS	Determ	ination						
		EB			WB			NB		SB		
Lane Group	L	Т	R		T	R	L	Т	R	L	TR	
Adjusted Flow Rate	14	1032	44	259	1577	202	109	468	281	201	745	
Lane Group Capacity	75	1401	604	317	1961	604	134	945	394	229	930	
v/c Ratio	0.19	0.74	0.07	0.82	0.80	0.33	0.81	0.50	0.71	0.88	0.80	
Green Ratio	0.41	0.41	0.41	0.58	0.57	0.41	0.35	0.27	0.27	0.35	0.27	
Uniform Delay d ₁	26.5	35.0	25.2	28.7	23.7	28.4	48.5	43.4	46.5	49.6	47.9	
Delay Factor k	0.50	0.50	0.50	0.36	0.35	0.11	0.35	0.11	0.28	0.40	0.34	
Incremental Delay d ₂	5.4	3.5	0.2	15.3	2.5	0.3	30.5	0.4	6.0	29.7	5.1	
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	· ······
Control Delay	31.9	38.5	25.5	43.9	26.3	28.7	79.0	43.8	52.5	79.2	53.0	
Lane Group LOS	С	D	С	D	С	С	E	D	D	E	D	
Approach Delay	37	.9		28	3.8		51.1				58.6	
Approach LOS	Ĺ)			0		D			Е		
Intersection Delay	40	.4		Intersecti			ection LOS			D		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/3/2007 4:02 Pt

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Volume Adjustment

<u>na provinski se od orazon zakon zako</u>	Mardaer Kein	EB			<u>Urando a co</u> WB			NR		SB			
	LT	TH	RT		ТН	RT		Тн	BT				
Volume	78	1337	46	367	1144	298	121	603	254	226	389	37	
PHF	0.90	0.90	0.90	0.92	0.92	0.92	0.90	0.90	0.90	0.88	0.88	0.88	
Adjusted Flow Rate	87	1486	39	399	1243	299	134	670	144	257	442	42	
Lane Group	L	T	R	L	Т	R	L	т	R	L	TR		
Adjusted Flow Rate	87	1486	39	399	1243	299	134	670	144	257	484		
Proportion of LT or RT	1.000		1.000	1.000		1.000	1.000		1.000	1.000		0.087	
Saturation Flow Rate													
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0	
f _w	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000	<u> </u>	
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980		
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
fp	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f _{bb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f _a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952		
f _{LT}	0.950	1.000	-	0.950	1.000		0.950	1.000	_	0.950	1.000	<u> </u>	
Secondary f _{LT}	0.150	0.150		0.060	0.060		0.453	0.453		0.114	0.114		
f _{RT}	-	1.000	0.850	-	1.000	0.850		1.000	0.850		0.987	·······	
f _{Lpb}	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000		
f _{Rpb}		1.000	1.000		1.000	1.000		1.000	1.000	_	1.000		
Adjusted Satflow	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3501		
Secondary Adjusted Satflow	280	515		108	206		787	1606		199	400		

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis														
		EB			WB			NB			SB	<u>. 1997 - 1997 - 1997 - 1997</u>		
Lane Group		T	R	L	T	R	L	T	R	L	TR	<u> </u>		
Adjusted Flow Rate	87	1486	39	399	1243	299	134	670	144	257	484	<u> </u>		
Satflow Rate	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3501			
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
Green Ratio	0.45	0.40	0.40	0.61	0.51	0.51	0.23	0.19	0.19	0.35	0.26			
Lane Group Capacity	194	1385	597	329	1744	752	208	686	286	244	927			
v/c Ratio	0.45	1.07	0.07	1.21	0.71	0.40	0.64	0.98	0.50	1.05	0.52	<u> </u>		
Flow Ratio	0.05	0.43	0.03	0.16	0.36	0.20	0.03	0.19	0.10	0.12	0.14			
Critical Lane Group	N	N	N	Y	N	N	N	N	N	Y	N			
Sum Flow Ratios		~~~~~~	-	· · · · · · · · · · · · · · · · · · ·	. 1	1.68	- <u></u>	_!				i		
Lost Time/Cycle		12.							,					
Critical v/c Ratio		1.									·····			
Lane Group Capacity, (Contro	ol Dela	y, and	LOS	Determ	inatior		Alf and the second seco	And the second star of the secon					
		EB			WB			NB			SB	<u>R.V.A. 9</u> _		
Lane Group	L	T	R	L	T	R	L	Τ	R	L	TR			
Adjusted Flow Rate	87	1486	39	399	1243	299	134	670	144	257	484			
Lane Group Capacity	194	1385	597	329	1744	752	208	686	286	244	927			
v/c Ratio	0.45	1.07	0.07	1.21	0.71	0.40	0.64	0.98	0.50	1.05	0.52	<u></u>		
Green Ratio	0.45	0.40	0.40	0.61	0.51	0.51	0.23	0.19	0.19	0.35	0.26			
Uniform Delay d ₁	25.6	44.7	27.4	52.1	28.4	22.7	53.8	60.2	54.1	45.4	47.1			
Delay Factor k	0.11	0.50	0.50	0.50	0.28	0.11	0.22	0.48	0.11	0.50	0.13	·······		
Incremental Delay d ₂	1.6	46.4	0.2	120.5	1.4	0.3	6.7	28.5	1.4	72.3	0.5	<u> </u>		
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
Control Delay	27.2	91.1	27.6	172.6	29.8	23.0	60.5	88.7	55.5	117.8	47.6	<u></u>		
Lane Group LOS	С	F	С	F	С	С	E	F	E	F	D			
Approach Delay	86	.1		58	3.1		79.6		-		71.9			
Approach LOS	F E					E				E		······································		
Intersection Delay	72	72.6 Inte						Intersection LOS				E		

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/3/2007 4:03 Pil

General Information

Volume Adjustment												
	-	EB			WB			NB			SB	<u></u>
	LT	ТН	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Volume	98	731	61	279	883	237	92	487	175	174	315	56
PHF	0.91	0.91	0.91	0.90	0.90	0.90	0.94	0.94	0.94	0.88	0.88	0.88
Adjusted Flow Rate	108	803	67	310	981	263	98	518	185	198	358	64
Lane Group	L	Т	R	L	Т	R	L	T	R	L	TR	
Adjusted Flow Rate	108	803	67	310	981	263	98	518	185	198	422	
Proportion of LT or RT	1.000		1.000	1.000		1.000	1.000		1.000	1.000		0.152
Saturation Flow Rate												
Base Satflow	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	<u> </u>
Number of Lanes	1	2	1	1	2	1	1	2	1	1	2	0
f _w	1.000	0.967	0.933	0.967	0.967	0.933	0.933	1.000	0.933	0.933	1.000	
f _{HV}	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	0.980	
fg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _p	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{bb}	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	<u> </u>
f _a	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
f _{LU}	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	1.000	1.000	0.952	· · · · · · · · ·
f _{LT}	0.950	1.000	-	0.950	1.000		0.950	1.000		0.950	1.000	
Secondary f _{LT}	0.257	0.257		0.116	0.116	-	0.506	0.506	_	0.186	0.186	
f _{RT}	_	1.000	0.850		1.000	0.850	-	1.000	0.850		0.977	
f _{Lpb}	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000	
f _{Rpb}	-	1.000	1.000		1.000	1.000	-	1.000	1.000	-	1.000	
Adjusted Satflow	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3466	
Secondary Adjusted Satflow	478	880		209	398		880	1794		324	646	

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis													
		EB			WB			NB			SB	Shadi Lifa ya	
Lane Group	L	Т	R	L	Т	R	L	Τ	R	L	TR		
Adjusted Flow Rate	108	803	67	310	981	263	98	518	185	198	422		
Satflow Rate	1770	3428	1478	1711	3428	1478	1652	3547	1478	1652	3466		
Lost Time	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Green Ratio	0.34	0.28	0.28	0.56	0.43	0.43	0.23	0.19	0.19	0.39	0.28		
Lane Group Capacity	249	960	414	458	1460	629	239	680	283	327	982		
v/c Ratio	0.43	0.84	0.16	0.68	0.67	0.42	0.41	0.76	0.65	0.61	0.43		
Flow Ratio	0.06	0.23	0.05	0.18	0.29	0.18	0.04	0.15	0.13	0.12	0.12		
Critical Lane Group	N	Y	N	Y	N	N	N	Y	N	Y	N		
Sum Flow Ratios						0.68	3	<u></u>				<u> </u>	
Lost Time/Cycle						24.0	0						
Critical v/c Ratio				,,,,,,,		0.85	5	<u></u>					
Lane Group Capacity,	Contro	l Dela	y, and	LOS	Determ	inatior							
		EB			WB			NB			SB		
Lane Group	L	T	R	L	T	R	L	Т	R	L	TR	· · · · ·	
Adjusted Flow Rate	108	803	67	310	981	263	98	518	185	198	422		
Lane Group Capacity	249	960	414	458	1460	629	239	680	283	327	982		
v/c Ratio	0.43	0.84	0.16	0.68	0.67	0.42	0.41	0.76	0.65	0.61	0.43		
Green Ratio	0.34	0.28	0.28	0.56	0.43	0.43	0.23	0.19	0.19	0.39	0.28	<u></u> _	
Uniform Delay d ₁	27.5	40.6	32.6	26.5	27.7	24.1	38.7	45.9	44.8	26.8	35.1	,	
Delay Factor k	0.11	0.50	0.50	0.25	0.24	0.11	0.11	0.31	0.23	0.19	0.11		
Incremental Delay d ₂	1.2	8.6	0.8	4.0	1.2	0.5	1.1	5.1	5.3	3.2	0.3		
PF Factor	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	 .	
Control Delay	28.7	49.2	33.4	30.5	28.9	24.5	39.9	51.0	50.2	30.0	35.4	<u> </u>	
Lane Group LOS	С	D	С	С	С	С	D	D	D	C	D	<u> </u>	
Approach Delay	45	.9		28	3.5		49.4			33.7			
Approach LOS	L)		C			D			C			
Intersection Delay	37	.8			Intersec			5					

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/3/2007 4:03 P

General Information

Volume Adjustment												
		EB			WB			NB			SB	
		TH	RT	LT	ТН	RT	LT	TH	RT	LT	TH	RT
Volume	340	52	35					364	323	195	671	
PHF	0.91	0.91	0.91				8	0.98	0.98	0.89	0.89	
Adjusted Flow Rate	374	57	15					371	124	219	754	
Lane Group	L	TR						T	R	L	Т	
Adjusted Flow Rate	374	72						371	124	219	754	
Proportion of LT or RT	1.000		0.208						1.000	1.000		0.000
Saturation Flow Rate												
Base Satflow	1900	1900						1900	1900	1900	1900	trada prina con
Number of Lanes	2	2	0					2	1	2	2	
f _w	1.000	1.000						0.967	0.933	1.000	1.000	<u></u> -
f _{HV}	0.980	0.980						0.980	0.980	0.980	0.980	
fg	1.000	1.000						1.000	1.000	1.000	1.000	
fp	1.000	1.000						1.000	1.000	1.000	1.000	
f _{bb}	1.000	1.000						1.000	1.000	1.000	1.000	
f _a	1.000	1.000						1.000	1.000	1.000	1.000	<u> </u>
f _{LU}	0.971	0.952						0.952	1.000	0.971	0.952	
f _{LT}	0.950	1.000				_		1.000		0.950	1.000	
Secondary f _{LT}			_									
f _{RT}		0.969						1.000	0.850		1.000	
f _{Lpb}	1.000	1.000						1.000		1.000	1.000	
f _{Rpb}		1.000		_				1.000	1.000	_	1.000	
Adjusted Satflow	3437	3436						3428	1478	3437	3547	
Secondary Adjusted Satflow			_									

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis												
		EB			WB			NB			SB	
Lane Group	L	TR						T	R	L	Т	
Adjusted Flow Rate	374	72						371	124	219	754	
Satflow Rate	3437	3436						3428	1478	3437	3547	
Lost Time	2.0	2.0					1	2.0	2.0	2.0	2.0	
Green Ratio	0.24	0.24						0.49	0.49	0.10	0.64	
Lane Group Capacity	825	825						1663	717	361	2288	
v/c Ratio	0.45	0.09						0.22	0.17	0.61	0.33	
Flow Ratio	0.11	0.02						0.11	0.08	0.06	0.21	
Critical Lane Group	Y	N			[N	N	N	Y	
Sum Flow Ratios			I	I,	J	0.3	2					L
Lost Time/Cycle				_		11.3	50			······································		
Critical v/c Ratio						0.3	6					
Lane Group Capacity,	Contro	l Delay	, and I	LOS D	etermi	nation						
		EB			WB	er fast fast fast fast fast fast fast fast		NB	A second se		SB	
Lane Group	L	TR						T	R			<u> </u>
Adjusted Flow Rate	374	72						371	124	219	754	
Lane Group Capacity	825	825						1663	717	361	2288	
v/c Ratio	0.45	0.09						0.22	0.17	0.61	0.33	
Green Ratio	0.24	0.24						0.49	0.49	0.10	0.64	
Uniform Delay d ₁	32.4	29.5						14.9	14.5	42.8	8.0	
Delay Factor k	0.50	0.50						0.11	0.11	0.19	0.0	
Incremental Delay d ₂	1.8	0.2						0.1	0.1	2.9	0.1	
PF Factor	1.000	1.000						1.000	1 000	1 000	1.000	
Control Delay	34.2	29.7						14.9	14.6	45.7	8.1	
Lane Group LOS	С	С						B	B	וס., ת	Δ	
Approach Delay	33	3.5		I,				1.9		<u> </u>	16.6	
Approach LOS	(2						В			 	
Intersection Delay	20).1				Intersec	tion LO	s			<u>~</u>	<u> </u>

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/3/2007 4:05 Pt

General Information

		FB											
		EB			WB			NB			SB		
			RT		TH	RT	LT	TH	RT	LT	TH	RT	
Volume	622	1463	119					691	311	354	631		
PHF	0.97	0.97	0.97					0.81	0.81	0.75	0.75	-	
Adjusted Flow Rate	641	1508	99	-				853	315	472	841		
Lane Group	L	TR						Т	R	L	-		
Adjusted Flow Rate	641	1607			-			853	315	472	841		
Proportion of LT or RT	1.000	-	0.062		-				1.000	1.000		0.000	
Saturation Flow Rate												0.000	
Base Satflow	1900	1900						1900	1900	1900	1900		
Number of Lanes	2	2	0					2	1	2	2		
f _w	1.000	1.000						0.967	0.933	1.000	1.000		
f _{HV}	0.980	0.980						0.980	0.980	0.980	0.980	<u> </u>	
fg	1.000	1.000					-	1.000	1.000	1.000	1.000		
f _p	1.000	1.000						1.000	1.000	1.000	1.000		
f _{bb}	1.000	1.000						1.000	1.000	1.000	1.000		
f _a	1.000	1.000						1.000	1.000	1.000	1.000		
f _{LU}	0.971	0.952					1	0.952	1.000	0.971	0.952		
f _{LT}	0.950	1.000	-					1.000		0.950	1.000		
Secondary f _{LT}						_		-					
f _{RT}	_	0.991						1.000	0.850		1.000		
f _{Lpb}	1.000	1.000					<u> </u>	1.000		1.000	1.000		
f _{Rpb}		1.000				·		1.000	1.000	-	1.000		
Adjusted Satflow	3437	3514						3428	1478	3437	3547		
Secondary Adjusted Satflow			-										
		·			1		1		1				

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis								
		EB	WB	NB			SB	
Lane Group	L	TR		Т	R	L	Τ	
Adjusted Flow Rate	641	1607		853	315	472	841	
Satflow Rate	3437	3514		3428	1478	3437	3547	
Lost Time	2.0	2.0		2.0	2.0	2.0	2.0	
Green Ratio	0.43	0.43		0.26	0.26	0.14	0.45	<u> </u>
Lane Group Capacity	1488	1522		881	380	481	1603	<u> </u>
v/c Ratio	0.43	1.06		0.97	0.83	0.98	0.52	
Flow Ratio	0.19	0.46		0.25	0.21	0.14	0.24	
Critical Lane Group	N	Y		Y	N	Y	N	
Sum Flow Ratios		I	0.	84	1	- F		L
Lost Time/Cycle			17	.00				
Critical v/c Ratio			1.	02				
Lane Group Capacity, C	ontro	I Delay, and	LOS Determinatio	n				
		EB	WB	NB			SB	to os Eligibilianos en
Lane Group	L	TR		T	R	L	T	
Adjusted Flow Rate	641	1607		853	315	472	841	·······
Lane Group Capacity	1488	1522		881	380	481	1603	
v/c Ratio	0.43	1.06		0.97	0.83	0.98	0.52	••••••••••••••••••••••••••••••••••••••
Green Ratio	0.43	0.43		0.26	0.26	0.14	0.45	······································
Uniform Delay d ₁	19.8	28.4		36.7	35.1	42.9	<i>19.</i> 7	
Delay Factor k	0.50	0.50		0.48	0.37	0.49	0.13	
Incremental Delay d ₂	0.9	39.4		22.8	14.2	36.1	0.3	
PF Factor	1.000	1.000		1.000	1.000	1.000	1.000	
Control Delay	20.7	67.7		59.5	49.3	78.9	20.0	
Lane Group LOS	С	E		E	D	E	С	
Approach Delay	54	1.3		56.8			41.2	
Approach LOS	L	C		E			D	
Intersection Delay	51	1.3	Inters	ection LOS			D	

Copyright © 2005 University of Florida, All Rights Reserved

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Volume Adjustment EΒ WB NB SB LT TH RT LT ΤH RT LT TΗ RT LT ΤH RT 493 129 Volume 71 485 232 285 542 0.91 PHF 0.91 0.91 0.93 0.93 0.94 0.94 Adjusted Flow Rate 542 142 55 522 33 303 577 L TR Т Lane Group R L Т 542 Adjusted Flow Rate 197 522 33 303 577 Proportion of LT or RT 1.000 ---0.279 1.000 1.000 -----0.000 --Saturation Flow Rate 1900 1900 1900 1900 1900 1900 **Base Satflow** 2 2 0 2 1 2 2 Number of Lanes 1.000 1.000 0.933 1.000 1.000 0.967 fw 0.980 0.980 0.980 0.980 0.980 0.980 f_{HV} 1.000 1.000 1.000 1.000 1.000 1.000 fg 1.000 1.000 1.000 1.000 1.000 1.000 fp 1.000 1.000 1.000 1.000 1.000 1.000 f_{bb} 1.000 1.000 1.000 1.000 1.000 1.000 fa 0.971 0.952 0.952 1.000 0.971 0.952 fLU 0.950 1.000 1.000 0.950 1.000 f_{LT} ___ -----Secondary fir ____ _ -----0.958 1.000 0.850 1.000 f_{RT} ____ ____ 1.000 1.000 1.000 1.000 1.000 f_{Lpb} --------1.000 1.000 1.000 1.000 ------f_{Rpb} 3398 3437 3428 1478 3437 3547 Adjusted Satflow Secondary Adjusted Satflow _ --------

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

capacity Analysis										
		EB		WB		NB			SB	an an tha tha sea tha
Lane Group	L	TR				Т	R	L	T	1
Adjusted Flow Rate	542	197				522	33	303	577	
Satflow Rate	3437	3398				3428	1478	3437	3547	
Lost Time	2.0	2.0				2.0	2.0	2.0	2.0	
Green Ratio	0.33	0.33				0.30	0.30	0.14	0.51	
Lane Group Capacity	1146	1133				1028	443	481	1821	
v/c Ratio	0.47	0.17				0.51	0.07	0.63	0.32	
Flow Ratio	0.16	0.06				0.15	0.02	0.09	0.16	<u> </u>
Critical Lane Group	Y	N				Y	N	Y	N	
Sum Flow Ratios		_1I		1	0.40					<u> </u>
Lost Time/Cycle	•				17.00				<u> </u>	<u> </u>
Critical v/c Ratio				anna i sulat	0.51				<u></u>	<u> </u>
Lane Group Capacity, C	ontro	l Delay,	and LOS	Determir	nation					
				ngh dan yanna andar yang	en en antikologiko (h. e. e. e. g. e. g					
	1	FR		WB		NB			SB	
Lane Group	L			WB		<u>NB</u> Τ	R	L.	SB T	
Lane Group Adjusted Flow Rate	L 542	EB TR 197		WB		NB <i>T</i> 522	R 33	L 303	SB 7 577	
Lane Group Adjusted Flow Rate Lane Group Capacity	L 542 1146	EB TR 197 1133		WB		NB T 522 1028	R 33 443	L 303 481	SB 7 577 1821	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio	L 542 1146 0.47	EB TR 197 1133 0.17		WB		NB T 522 1028 0.51	R 33 443 0.07	L 303 481 0.63	SB 7 577 1821 0.32	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio	L 542 1146 0.47 0.33	EB TR 197 1133 0.17 0.33		WB		NB T 522 1028 0.51 0.30	R 33 443 0.07 0.30	L 303 481 0.63 0.14	SB T 577 1821 0.32 0.51	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁	L 542 1146 0.47 0.33 19.8	EB TR 197 1133 0.17 0.33 17.7		WB		NB T 522 1028 0.51 0.30 21.7	R 33 443 0.07 0.30 18.8	L 303 481 0.63 0.14 30.4	SB T 577 1821 0.32 0.51 10.6	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁ Delay Factor k	L 542 1146 0.47 0.33 19.8 0.50	EB TR 197 1133 0.17 0.33 17.7 0.50		WB		NB T 522 1028 0.51 0.30 21.7 0.12	R 33 443 0.07 0.30 18.8 0.11	L 303 481 0.63 0.14 30.4 0.21	SB T 577 1821 0.32 0.51 10.6 0.11	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁ Delay Factor k Incremental Delay d ₂	L 542 1146 0.47 0.33 19.8 0.50 1.4	EB TR 197 1133 0.17 0.33 17.7 0.50 0.3		WB		NB T 522 1028 0.51 0.30 21.7 0.12 0.4	R 33 443 0.07 0.30 18.8 0.11 0.1	L 303 481 0.63 0.14 30.4 0.21 2.7	SB T 577 1821 0.32 0.51 10.6 0.11 0.1	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁ Delay Factor k Incremental Delay d ₂ PF Factor	L 542 1146 0.47 0.33 19.8 0.50 1.4 1.000	EB TR 197 1133 0.17 0.33 17.7 0.50 0.3 1.000		WB		NB T 522 1028 0.51 0.30 21.7 0.12 0.4	R 33 443 0.07 0.30 18.8 0.11 0.1 1.000	L 303 481 0.63 0.14 30.4 0.21 2.7 1.000	SB T 577 1821 0.32 0.51 10.6 0.11 0.1 1.000	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁ Delay Factor k Incremental Delay d ₂ PF Factor Control Delay	L 542 1146 0.47 0.33 19.8 0.50 1.4 1.000 21.2	EB TR 197 1133 0.17 0.33 17.7 0.50 0.3 1.000 18.0		WB		NB T 522 1028 0.51 0.30 21.7 0.12 0.4 1.000 22.1	R 33 443 0.07 0.30 18.8 0.11 0.1 1.000 18.9	L 303 481 0.63 0.14 30.4 0.21 2.7 1.000 33.1	SB T 577 1821 0.32 0.51 10.6 0.11 0.1 1.000 10.7	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁ Delay Factor k Incremental Delay d ₂ PF Factor Control Delay Lane Group LOS	L 542 1146 0.47 0.33 19.8 0.50 1.4 1.000 21.2 C	EB TR 197 1133 0.17 0.33 17.7 0.50 0.3 1.000 18.0 B		WB		NB T 522 1028 0.51 0.30 21.7 0.12 0.4 1.000 22.1 C	R 33 443 0.07 0.30 18.8 0.11 0.1 1.000 18.9 B	L 303 481 0.63 0.14 30.4 0.21 2.7 1.000 33.1 C	SB T 577 1821 0.32 0.51 10.6 0.11 0.1 1.000 10.7 B	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁ Delay Factor k Incremental Delay d ₂ PF Factor Control Delay Lane Group LOS Approach Delay	L 542 1146 0.47 0.33 19.8 0.50 1.4 1.000 21.2 C 20	EB TR 197 1133 0.17 0.33 17.7 0.50 0.3 1.000 18.0 B .3		WB		NB T 522 1028 0.51 0.30 21.7 0.12 0.4 1.000 22.1 C 21.9	R 33 443 0.07 0.30 18.8 0.11 0.1 1.000 18.9 B	L 303 481 0.63 0.14 30.4 0.21 2.7 1.000 33.1 C	SB T 577 1821 0.32 0.51 10.6 0.11 0.1 1.000 10.7 B 18.4	
Lane Group Adjusted Flow Rate Lane Group Capacity v/c Ratio Green Ratio Uniform Delay d ₁ Delay Factor k Incremental Delay d ₂ PF Factor Control Delay Lane Group LOS Approach Delay	L 542 1146 0.47 0.33 19.8 0.50 1.4 1.000 21.2 C 20 C	EB TR 197 1133 0.17 0.33 17.7 0.50 0.3 1.000 18.0 B 3.3		WB		NB T 522 1028 0.51 0.30 21.7 0.12 0.4 1.000 22.1 C 21.9 C	R 33 443 0.07 0.30 18.8 0.11 0.1 1.000 18.9 B	L 303 481 0.63 0.14 30.4 0.21 2.7 1.000 33.1 C	SB T 577 1821 0.32 0.51 10.6 0.11 0.1 1.000 10.7 B 18.4 B	

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/3/2007 4:06 PM

General Information

Volume Adjustment												
		EB			WB			NB			SB	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
Volume				334	1621	97	245	460			531	485
PHF				0.96	0.96	0.96	0.98	0.98			0.94	0.94
Adjusted Flow Rate				348	1689	97	250	469			565	516
Lane Group				L	TR		L	Т			T	R
Adjusted Flow Rate				348	1786		250	469			565	516
Proportion of LT or RT				1.000		0.054	1.000		0.000			1.000
Saturation Flow Rate												
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes				2	3	0	2	2			3	1
f _W				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
f _g				1.000	1.000		1.000	1.000			1.000	1.000
f _p				1.000	1.000		1.000	1.000			1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000
f _a				1.000	1.000		1.000	1.000			1.000	1.000
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}				0.950	1.000	-	0.950	1.000			1.000	
Secondary f _{LT}			-	<u></u>								
f _{RT}					0.992		_	1.000			1.000	0.850
f _{Lpb}			-	1.000	1.000		1.000	1.000			1.000	
f _{Rpb}					1.000	-		1.000			1.000	1.000
Adjusted Satflow				3437	5033		3437	3547			5074	1583
Secondary Adjusted Satflow			_						-			

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis							
	EB		WB		NB	SB	<u> </u>
Lane Group		L	TR	L		Т	R
Adjusted Flow Rate		348	1786	250	469	565	516
Satflow Rate		3437	5033	3437	3547	5074	1583
Lost Time		2.0	2.0	2.0	2.0	2.0	2.0
Green Ratio		0.40	0.40	0.10	0.48	0.32	0.32
Lane Group Capacity		1375	2013	351	1710	1634	510
v/c Ratio		0.25	0.89	0.71	0.27	0.35	1.01
Flow Ratio		0.10	0.35	0.07	0.13	0.11	0.33
Critical Lane Group		N	Y	Y	N	N	V V
Sum Flow Ratios				0.75			
Lost Time/Cycle			ana 10 ana 10	17.60			
Critical v/c Ratio				0.91			<u></u>
Lane Group Capacity	, Control Delay, an	d LOS	Determina	tion			
	EB		WB		NB	SB	<u> 전문</u> 상당한다.
Lane Group		L	TR	L	Τ	T	R
Adjusted Flow Rate		348	1786	250	469	565	516
Lane Group Capacity		1375	2013	351	1710	1634	510
v/c Ratio		0.25	0.89	0.71	0.27	0.35	1 01
Green Ratio		0.40	0.40	0.10	0.48	0.32	0.32
Uniform Delay d ₁		20.0	27.9	43.5	15.5	25.9	33.9
Delay Factor k		0.50	0.50	0.28	0.11	0.11	0.50
Incremental Delay d ₂		0.4	6.3	6.7	0.1	0.1	42.8
PF Factor		1.000	1.000	1.000	1.000	1.000	1.000
Control Delay		20.5	34.2	50.1	15.5	26.0	76.7
Lane Group LOS		С	С	D	В	С	E
Approach Delay		3	1.9	2	7.6	50.2	
Approach LOS			С		C	D	
Intersection Delay	36.2		Inte	ersection LOS	S	D	

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/3/2007 4:04 F

General Information

Volume Adjustment												
		EB	· ······		WB			NB			SB	
		ТН	RT		ТН	RT	LT	TH	RT	LT	ТН	RT
Volume				296	211	198	343	970			689	217
PHF				0.90	0.90	0.90	0.91	0.91			0.87	0.87
Adjusted Flow Rate			1	329	234	168	377	1066			792	249
Lane Group				L	TR		L	Т			T	R
Adjusted Flow Rate				329	402		377	1066			792	249
Proportion of LT or RT		_		1.000		0.418	1.000		0.000			1.000
Saturation Flow Rate												
Base Satflow				1900	1900		1900	1900			1900	1900
Number of Lanes				2	3	0	2	2			3	1
f _w				1.000	1.000		1.000	1.000			1.000	1.000
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980
f _g				1.000	1.000		1.000	1.000			1.000	1.000
fp				1.000	1.000		1.000	1.000			1.000	1.000
f _{bb}				1.000	1.000		1.000	1.000	-		1.000	1.000
f _a				1.000	1.000		1.000	1.000			1.000	1.000
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000
f _{LT}				0.950	1.000		0.950	1.000			1.000	
Secondary f _{LT}						_						_
f _{RT}				-	0.937			1.000			1.000	0.850
f _{Lpb}				1.000	1.000		1.000	1.000			1.000	
f _{Rpb}	_				1.000			1.000			1.000	1.000
Adjusted Satflow				3437	4756		3437	3547			5074	1583
Secondary Adjusted Satflow												

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Capacity Analysis							
	EB		WB		NB	SB	
Lane Group		L	TR	L	Т	 Т	R
Adjusted Flow Rate		329	402	377	1066	 792	249
Satflow Rate		3437	4756	3437	3547	 5074	1583
Lost Time		2.0	2.0	2.0	2.0	 2.0	2.0
Green Ratio		0.30	0.30	0.23	0.58	 0.29	0.29
Lane Group Capacity		1031	1427	804	2064	 1471	459
v/c Ratio		0.32	0.28	0.47	0.52	0.54	0.54
Flow Ratio		0.10	0.08	0.11	0.30	0.16	0.16
Critical Lane Group		Y	N	N	Y	N	N
Sum Flow Ratios				0.40	<u>H</u>		
Lost Time/Cycle			, mar Pic - 1	11.80			<u> </u>
Critical v/c Ratio				0.45		 104 mar 11	_ <u> </u>
Lane Group Capacity,	Control Delay, and	LOS	Determin	ation			
	EB		WB		NB	SB	
Lane Group		L	TR	L	T	 Т	R
Adjusted Flow Rate		329	402	377	1066	 792	249
Lane Group Capacity		1031	1427	804	2064	1471	459
v/c Ratio		0.32	0.28	0.47	0.52	 0.54	0.54
Green Ratio		0.30	0.30	0.23	0.58	 0.29	0.29
Uniform Delay d ₁		27.1	26.8	33.0	12.5	 29.9	29.9
Delay Factor k		0.50	0.50	0.11	0.12	 0.14	0.14
Incremental Delay d ₂		0.8	0.5	0.4	0.2	 0.4	1.3
PF Factor		1.000	1.000	1.000	1.000	 1.000	1.000
Control Delay		27.9	27.3	33.4	12.7	 30.3	31.2
Lane Group LOS		С	С	С	В	 С	C
Approach Delay		27	7.6		18.1	30.5	I,
Approach LOS		(С		В	 <u>с</u>	<u></u>
Intersection Delay	24.3		Int	ersection LC	DS	 С	

Copyright © 2005 University of Florida, All Rights Reserved

Generated: 12/3/2007 4:04 Pi

VOLUME ADJUSTMENT AND SATURATION FLOW RATE WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246

Volume Adjustment

	EB				WB			NB			SB		
	LT	TH	RT	LT	ТН	RT	LT	ТН	RT		ТН	RT	
Volume				220	178	183	120	857			607	330	
PHF				0.87	0.87	0.87	0.98	0.98			0.93	0.93	
Adjusted Flow Rate				253	205	147	122	874			653	252	
Lane Group				L	TR			<i>τ</i>					
Adjusted Flow Rate				253	352		122	874			652		
Proportion of LT or RT				1.000		0.418	1.000		0 000			353	
Saturation Flow Rate												1.000	
Base Satflow				1900	1900	<u>198, 99-03, 68, 68</u>	1900	1900			1900	1900	
Number of Lanes				2	3	0	2	2			3		
f _w				1.000	1.000		1.000	1.000	_		1.000	1.000	
f _{HV}				0.980	0.980		0.980	0.980			0.980	0.980	
f _g				1.000	1.000		1.000	1.000			1.000	1.000	
f _p				1.000	1.000		1.000	1.000		<u> </u>	1.000	1.000	
f _{bb}				1.000	1.000		1.000	1.000			1.000	1.000	
f _a				1.000	1.000		1.000	1.000			1.000	1.000	
f _{LU}				0.971	0.908		0.971	0.952			0.908	1.000	
f _{LT}				0.950	1.000	 	0.950	1.000			1.000		
Secondary f _{LT}								<u> </u>					
f _{RT}					0.937			1.000			1.000		
fLpb	-			1.000	1.000		1.000	1.000		_	1 000		
Roh					1.000			1.000			1.000	-	
Adjusted Satflow				- 3437	4756		3427	3547			1.000	1.000	
				/				3047			5074	1583	
Secondary Adjusted Satflow			-										

CAPACITY AND LOS WORKSHEET

General Information

Project Description THE PRESERVE @ ISLANDIA: 07246 Canaalty Analysia

	EB		WB		NB	90	CD			
Lane Group		L	TR							
Adjusted Flow Rate		253	352	122	874	650				
Satflow Rate		3437	4756	3437	3547	5074	<u> </u>			
Lost Time		2.0	2.0	2.0	20					
Green Ratio		0.33	0.33	0 14	0.51	2.0	2.0			
Lane Group Capacity		1146	1585	467	1807	1502	0.30			
v/c Ratio		0.22	0.22				469			
Flow Ratio		0.22	0.22	0.26	0.48	0.43	0.75			
Critical Lane Group		0.07	0.07	0.04	0.25	0.13	0.22			
Sum Elow Ratios		N	Ŷ	Y	N	N	Y			
Lost Time/Cycle		0.33								
				17.60						
				0.43			<u> </u>			
Lane Group Capacity	, Control Delay, a	nd LOS	Determina	ition						
	EB		WB		NB	SB				
Lane Group		L	TR	L	Т	T	R			
Adjusted Flow Rate		253	352	122	874	653	353			
Lane Group Capacity		1146	1585	467	1807	1502	469			
v/c Ratio		0.22	0.22	0.26	0.48	0.42	10.75			
Green Ratio		0.33	0.33	0.14	0.51	0.43	0.75			
Uniform Delay d ₁		18.0	18.0	29.0	12.0	21.2	0.30			
Delay Factor k		0.50	0.50	0.11	0.11	0.11	23.9			
Incremental Delay d ₂		0.4	0.3	0.3	0.2	0.11	0.31			
PF Factor		1.000	1.000	1.000	1.000	1.000	0.0			
Control Delay		18.4	18.3	29.3	122	21.5	7.000			
Lane Group LOS		В	В	С	B	21.5	30.7			
Approach Delay		18	18.4		3					
Approach LOS		E	3	F	B		<u> </u>			
Intersection Delay	19.3		Inte	rsection LOS			<u> </u>			

Copyright © 2005 University of Florida, All Rights Reserved

N N STRAND THE STRAND	T	WO-WAY STO	OP CONT	FROL S	UMMARY				
General Informatio	Site	e Inforn	nation						
Analyst Agency/Co. Date Performed Analysis Time Period	MCM NELSO 11/26/20 AM BUI	Inte Juri Ana	Intersection Jurisdiction Analysis Year			SITE ACCESS @ NICHOLS ROAD 2009			
Project Description TH	IF PRESERVE	AT ISLANDIA: 0	7246						
East/West Street: SITE	ACCESS	AT ISLANDIA. U	Nort	h/South 9	Street: MICU	0/0 00/0			
Intersection Orientation:	North-South	<u> </u>	Stud	v Period	(hrs): 0.25	OLS ROAD			
Vehicle Volumes a	nd Adjustme	nts		S. TELESCO	(1110): 0.20	Alexandre Marine, Marine Marine, and Marine Marine, and Annual An Annual Annual A Annual Annual Ann Annual Annual Annu		and the second second second second	
Major Street	Street Northbour								
Movement	1 2		3		4				
	L	T		R				6	
Volume (veh/h)		540		3	5	851		<u>R</u>	
Peak-Hour Factor, PHF	1.00	0.98	0.	98	0.91	0.91		1.00	
(veh/h)	0	551		3	5	5 935		0	
Percent Heavy Vehicles	0				2				
DT Obernelised				Undivided			······		
				0	· · · · · ·			n	
Lanes	0	1	()	0	1			
			T	R	LT				
		0			······································	0			
Minor Street		Eastbound				Westbo	Westbound		
wovement	7	8		9	10	11		12	
Volume (uch/h)	L	T	F	۲	L	Т			
Peak-Hour Factor PHE	1.00				10			14	
Jourly Flow Rate HFR	1.00	1.00		00	0.90	1.00		0.90	
veh/h)	0	0	0		11	0		15	
Percent Heavy Vehicles	0	0	0	· · · · · · · · · · · · · · · · · · ·	2	0			
Percent Grade (%)		0							
lared Approach		N				N		<u></u>	
Storage		0							
RT Channelized			0		· · · · · · · · · · · · · · · · · · ·				
anes	0	0	0	0					
Configuration			†					0	
)elay, Queue Length, ar	nd Level of Ser	vice							
vpproach	Northbound	Southbound		Westhou	und				
lovement	1	4	7	8		10			
ane Configuration		LT	· · · · · · · · · · · · · · · · · · ·			10	11	12	
(veh/h)		5							
C (m) (veh/h)		1016		20					
/c		0.00		230					
5% queue lenath		0.00		0.11					
Control Delay (s/veh)		0.01		0.37					
OS		0.0		22.1					
pproach Delay (aluah)		A		<u> </u>					
pproach LOC				22.1					
pproduit LUS			C		······································				

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 12:48 Pt

	Т	WO-WAY STO	OP CONT	ROL SL	IMMARY					
General Informatio	n	Site	Site Information							
Analyst Agency/Co.	MCM NELSO	N & POPE	Inte	Intersection Jurisdiction Analysis Year			SITE ACCESS @ NICHOLS ROAD 2009			
Analysis Time Period	11/26/2 PM BUI	007 LD 2009	Ana							
Project Description Th	HE PRESERVE	AT ISLANDIA: 0	7246				· · · · · · · · · · · · · · · · · · ·			
East/West Street: SITE	ACCESS		Nort	h/South St	reet: NICH					
Intersection Orientation:	North-South		Stud	y Period (I	nrs): 0.25					
Vehicle Volumes a	nd Adjustme	ents								
Major Street		Northboun	d			Southb	nind	ang sa		
Movement	1	2		3	4	5				
	L	T		R	L	T		9		
Volume (ven/n)		967	1	2	19	645		<u> </u>		
Hourty Flow Pote UED	1.00	0.81	0.	81	0.88	0.88	3	1.00		
(veh/h)	0	1193	1	14		732		0		
Percent Heavy Vehicles	0									
Nedian Type				Undivi	ded		l	·····		
				0				0		
Lanes	0	1	()	0	1		0		
			T	R	LT			U		
Upstream Signal		0				0				
Minor Street	Eastbound					Westho	Westbound			
Movement	7	8	9		10		1 11 1			
	L	Т	F	2				12		
Volume (veh/h)								R		
Peak-Hour Factor, PHF	·1.00	1.00	1.0	0	0.90	1.00				
Hourly Flow Rate, HFR (veh/h)	0	0	0		7	0				
Percent Heavy Vehicles	0	0	0		2					
Percent Grade (%)		0						2		
-lared Approach		N								
Storage		0			<u>, , , , , , , , , , , , , , , , , , , </u>	0				
RT Channelized			(,		<u>├──</u>				
anes	0	0	0					0		
Configuration			_ <u></u>		U			0		
Jelay, Queue Length, ai	nd Level of Ser	vice								
\pproach	Northbound	Southbound		Moethour			_			
Movement	1	<u>A</u>	7				Eastbou	nd		
ane Configuration				<u>ل</u>	9	10	11	12		
/ (veh/h)		21								
(m) (veh/h)		21		19						
/c		5/8		119						
5% queue length		0.04		0.16						
Control Delay (aluab)		0.11		0.55						
		11.5		40.9						
		В		E			 			
pproach Delay (s/veh)				40.9		1				
pproach LOS				E		<u> </u>				
						1				

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 12:48 F

	Т	WO-WAY STC	P CONT	ROL SU	MMARY					
General Information	on		Site	Inform	ation					
Analyst	МСМ	МСМ			Intersection			SITE ACCESS @ NICHOL		
Agency/Co.	NELSO	NELSON & POPE			mersection			ROAD		
Date Performed	11/26/20	11/26/2007			Jurisdiction					
Analysis Time Period	SATUR	SATURDAY BUILD 2009			Analysis Year			2009		
Project Description 7	HE PRESERVE	AT ISLANDIA: 07	7246							
East/West Street: SITE	EACCESS		Nort	h/South St	reet: NICH	NSROAD				
Intersection Orientation	: North-South		Stud	y Period (h	nrs): 0.25	DEGINOAD	<u></u>			
Vehicle Volumes a	nd Adjustme	ents								
Major Street		Northbound	1			Southbound				
iviovement	1	2		3	4	5	1	6		
Volume (uch/h)	L	<u>T</u>		R	L	T		R		
Volume (ven/m)		809	1	3	20	533				
Hourly Flow Pate HEP	1.00	0.93	0.;	93	0.88	0.88		1.00		
(veh/h)	0	869	1	3	22	605		0		
Percent Heavy Vehicles	0		-	-	2					
Median Type			, fai	Undivid	ded					
RT Channelized				0						
Lanes	0	1		, 	0	1				
Configuration			T	2 17				0		
Upstream Signal		0				0				
Minor Street		Eastbound					Mosthaurd			
Movement	7	8			10	10 11 I T				
	L	T	F	2	10					
Volume (veh/h)				·	12			<u>R</u>		
Peak-Hour Factor, PHF	1.00	1.00	1.0	0	090	1.00				
Hourly Flow Rate, HFR (veh/h)	0	0	0		13	0		190		
Percent Heavy Vehicles	0	0								
Percent Grade (%)						0		2		
Flared Approach		N				0				
Storage						N				
RT Channelized						0				
anes	0			0				0		
Configuration			0		0	0		0		
elay Queue Length	und level of Sor					LR				
\pproach	Northbound	Southbound		10/						
Novement	1			vvestbour			Eastbound			
ane Configuration	1	4	<u> </u>	8	9	10	11	12		
(vob/b)			<u> </u>	<u>LR</u>						
		22		31						
- (in) (ven/n)		767		200						
//C		0.03		0.16						
5% queue length		0.09		0.54						
Control Delay (s/veh)		9.8		26.3		<u> - </u>	~ ~ ~ _			
OS		A					<u> </u>			
pproach Delay (s/veh)				26.2		- <u> </u>				
pproach LOS				20.3		ļ				
			<u>_</u>	<u> </u>						

Copyright © 2005 University of Florida, All Rights Reserved

HCS+TM Version 5.21

Generated: 12/4/2007 12:48 F